1,075 research outputs found

    Combined search for the quarks of a sequential fourth generation

    Get PDF
    Results are presented from a search for a fourth generation of quarks produced singly or in pairs in a data set corresponding to an integrated luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in 2011. A novel strategy has been developed for a combined search for quarks of the up and down type in decay channels with at least one isolated muon or electron. Limits on the mass of the fourth-generation quarks and the relevant Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a simple extension of the standard model with a sequential fourth generation of fermions. The existence of mass-degenerate fourth-generation quarks with masses below 685 GeV is excluded at 95% confidence level for minimal off-diagonal mixing between the third- and the fourth-generation quarks. With a mass difference of 25 GeV between the quark masses, the obtained limit on the masses of the fourth-generation quarks shifts by about +/- 20 GeV. These results significantly reduce the allowed parameter space for a fourth generation of fermions.Comment: Replaced with published version. Added journal reference and DO

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Stand Up, Speak Out! Racial Justice in Healthcare Education: Experiences of Minoritised Ethnic Students

    Get PDF
    Funded by Trinity Equality Fund 2022, the Faculty of Health Sciences Equality, Diversity and Inclusion (EDI) Group and Immigrant Council of Ireland launched a project entitled ‘Stand Up, Speak Out! Racial Justice in Healthcare Education’. This report articulates the lived experiences of racism in minoritised ethnic healthcare students (MEHSs) and recommends strategies to embed racial justice in healthcare education at Trinity. The report will be made available to staff and students in the Faculty of Health Sciences, Equality Office and relevant healthcare and higher education bodies in order to promote the inclusion of students’ voices in future racial justice strategies

    Search for the production of dark matter in association with top-quark pairs in the single-lepton final state in proton-proton collisions at √s=8 TeV

    Get PDF
    Peer reviewe

    Measurements of the top-quark mass using charged particle tracking

    Get PDF
    We present three measurements of the top-quark mass in the lepton plus jets channel with approximately 1.9 fb-1 of integrated luminosity collected with the CDF II detector using quantities with minimal dependence on the jet energy scale. One measurement exploits the transverse decay length of b-tagged jets to determine a top-quark mass of 166.9+9.5-8.5 (stat) +/- 2.9 (syst) GeV/c2, and another the transverse momentum of electrons and muons from W-boson decays to determine a top-quark mass of 173.5+8.8-8.9 (stat) +/- 3.8 (syst) GeV/c2. These quantities are combined in a third, simultaneous mass measurement to determine a top-quark mass of 170.7 +/- 6.3 (stat) +/- 2.6 (syst) GeV/c2.We present three measurements of the top-quark mass in the lepton plus jets channel with approximately 1.9  fb-1 of integrated luminosity collected with the CDF II detector using quantities with minimal dependence on the jet energy scale. One measurement exploits the transverse decay length of b-tagged jets to determine a top-quark mass of 166.9-8.5+9.5(stat)±2.9(syst)  GeV/c2, and another the transverse momentum of electrons and muons from W-boson decays to determine a top-quark mass of 173.5-8.9+8.8(stat)±3.8(syst)  GeV/c2. These quantities are combined in a third, simultaneous mass measurement to determine a top-quark mass of 170.7±6.3(stat)±2.6(syst)  GeV/c2.Peer reviewe

    Measurement of top quark–antiquark pair production in association with a W or Z boson in pp collisions at √s=8 TeV

    Get PDF
    Peer reviewe

    Observation of the diphoton decay of the Higgs boson and measurement of its properties

    Get PDF
    Peer reviewe
    corecore