1,193 research outputs found

    Tensile Properties of Inkjet 3D Printed Parts: Critical Process Parameters and Their Efficient Analysis

    Get PDF
    To design and optimize for capabilities of additive manufacturing processes it is also necessary to understand and model their variations in geometric and mechanical properties. In this paper, such variations of inkjet 3D printed parts are systematically investigated by analyzing parameters of the whole process, i.e. storage of the material, printing, testing, and storage of finished parts. The goal is to both understand the process and determine the parameters that lead to the best mechanical properties and the most accurate geometric properties. Using models based on this understanding, we can design and optimize parts, and fabricate and test them successfully, thus closing the loop. Since AM materials change rapidly and this process will have to be repeated, it is shown how to create a cost and time efficient experimental design with the one-factor-at-a-time and design of experiments methods, yielding high statistical accuracies for both main and interaction effects. The results show that the number of intersections between layers and nozzles along the load-direction has the strongest impact on the mechanical properties followed by the UV exposure time, which is investigated by part spacing, the position on the printing table and the expiry date of the material. Minor effects are found for the storage time and the surface roughness is not affected by any factor. Nozzle blockage, which leads to a smaller flow-rate of printing material, significantly affected the width and waviness of the printed product. Furthermore, the machine’s warm-up time is found to be an important factor

    Tensile Properties of Inkjet 3D Printed Parts: Critical Process Parameters and Their Efficient Analysis

    Get PDF
    To design and optimize for capabilities of additive manufacturing processes it is also necessary to understand and model their variations in geometric and mechanical properties. In this paper, such variations of inkjet 3D printed parts are systematically investigated by analyzing parameters of the whole process, i.e. storage of the material, printing, testing, and storage of finished parts. The goal is to both understand the process and determine the parameters that lead to the best mechanical properties and the most accurate geometric properties. Using models based on this understanding, we can design and optimize parts, and fabricate and test them successfully, thus closing the loop. Since AM materials change rapidly and this process will have to be repeated, it is shown how to create a cost and time efficient experimental design with the one-factor-at-a-time and design of experiments methods, yielding high statistical accuracies for both main and interaction effects. The results show that the number of intersections between layers and nozzles along the load-direction has the strongest impact on the mechanical properties followed by the UV exposure time, which is investigated by part spacing, the position on the printing table and the expiry date of the material. Minor effects are found for the storage time and the surface roughness is not affected by any factor. Nozzle blockage, which leads to a smaller flow-rate of printing material, significantly affected the width and waviness of the printed product. Furthermore, the machine’s warm-up time is found to be an important factor

    Extremely anisotropic van der Waals thermal conductors

    Get PDF
    The densification of integrated circuits requires thermal management strategies and high thermal conductivity materials1–3. Recent innovations include the development of materials with thermal conduction anisotropy, which can remove hotspots along the fast-axis direction and provide thermal insulation along the slow axis4,5. However, most artificially engineered thermal conductors have anisotropy ratios much smaller than those seen in naturally anisotropic materials. Here we report extremely anisotropic thermal conductors based on large-area van der Waals thin films with random interlayer rotations, which produce a room-temperature thermal anisotropy ratio close to 900 in MoS2, one of the highest ever reported. This is enabled by the interlayer rotations that impede the through-plane thermal transport, while the\ua0long-range intralayer crystallinity maintains high in-plane thermal conductivity. We measure ultralow thermal conductivities in the through-plane direction for MoS2 (57 \ub1 3 mW m−1 K−1) and WS2 (41 \ub1 3 mW m−1 K−1) films, and we quantitatively explain these values using molecular dynamics simulations that reveal one-dimensional glass-like thermal transport. Conversely, the in-plane thermal conductivity in these MoS2 films is close to the single-crystal value. Covering nanofabricated gold electrodes with our anisotropic films prevents overheating of the electrodes and blocks heat from reaching the device surface. Our work establishes interlayer rotation in crystalline layered materials as a new degree of freedom for engineering-directed heat transport in solid-state systems

    Flexural behaviour of hot-finished high strength steel square and rectangular hollow sections

    Get PDF
    High strength steels, considered in the context of the structural Eurocodes, as steels with a yield strength over 460 MPa, are gaining increasing attention from structural engineers and researchers owing to their potential to enable lighter and more economic structures. This paper focuses on the bending strength of hot-finished high strength steel (HSS) square and rectangular hollow sections; the results of detailed experimental and numerical studies are presented and structural design rules for HSS cross-sections are proposed. A total of 22 in-plane bending tests, in three-point bending and four-point bending configurations, on HSS sections in grades S460 and S690 were conducted. The experimental results were replicated by means of non-linear finite element modelling. Upon validation of the finite element models, parametric studies were performed to assess the structural response of HSS sections over a wider range of cross-section slenderness, cross-section aspect ratio and moment gradient. The experimental results combined with the obtained numerical results were used to assess the suitability of the current European (EN 1993-1-1 and EN 1993-1-12) cross-section classification limits for HSS structural components. The reliability of the proposed cross-section classification limits was verified by means of the EN 1990 - Annex D method.The Research Fund for Coal and Steel (RFCS) under grant agreement No. RFSR CT 2012-00028. V&M DEUTSCHLAND GMBH, Mr. Gordon Herbert, Mr. Fillip Kirazov and Mr. Isaak Vryzidi

    Microwave-Assisted Extraction of Oleanolic Acid and Ursolic Acid from Ligustrum lucidum Ait

    Get PDF
    Oleanolic acid and ursolic acid are the main active components in fruit of Ligustrum lucidum Ait, and possess anticancer, antimutagenic, anti-inflammatory, antioxidative and antiprotozoal activities. In this study, microwave-assisted extraction of oleanolic acid and ursolic acid from Ligustrum lucidum was investigated with HPLC-photodiode array detection. Effects of several experimental parameters, such as type and concentration of extraction solvent, ratio of liquid to material, microwave power, extraction temperature and microwave time, on the extraction efficiencies of oleanolic acid and ursolic acid from Ligustrum lucidum were evaluated. The influence of experimental parameters on the extraction efficiency of ursolic acid was more significant than that of oleanolic acid (p < 0.05). The optimal extraction conditions were 80% ethanol aqueous solution, the ratio of material to liquid was 1:15, and extraction for 30 min at 70 °C under microwave irradiation of 500 W. Under optimal conditions, the yields of oleanolic acid and ursolic acid were 4.4 ± 0.20 mg/g and 5.8 ± 0.15 mg/g, respectively. The results obtained are helpful for the full utilization of Ligustrum lucidum, which also indicated that microwave-assisted extraction is a very useful method for extraction of oleanolic acid and ursolic acid from plant materials

    Effects of elevated CO2 on phytoplankton community biomass and species composition during a spring Phaeocystis spp. bloom in the western English Channel

    Get PDF
    A 21-year time series of phytoplankton community structure was analysed in relation to Phaeocystis spp. to elucidate its contribution to the annual carbon budget at station L4 in the western English Channel (WEC). Between 1993–2014 Phaeocystis spp. contributed ∼4.6% of the annual phytoplankton carbon and during the March − May spring bloom, the mean Phaeocystis spp. biomass constituted 17% with a maximal contribution of 47% in 2001. Upper maximal weekly values above the time series mean ranged from 63 to 82% of the total phytoplankton carbon (∼42–137 mg carbon (C) m −3 ) with significant inter-annual variability in Phaeocystis spp. Maximal biomass usually occurred by the end of April, although in some cases as early as mid-April (2007) and as late as late May (2013). The effects of elevated pCO 2 on the Phaeocystis spp. spring bloom were investigated during a fifteen-day semi-continuous microcosm experiment. The phytoplankton community biomass was estimated at ∼160 mg C m −3 and was dominated by nanophytoplankton (40%, excluding Phaeocystis spp.), Phaeocystis spp. (30%) and cryptophytes (12%). The smaller fraction of the community biomass comprised picophytoplankton (9%), coccolithophores (3%), Synechococcus (3%), dinoflagellates (1.5%), ciliates (1%) and diatoms (0.5%). Over the experimental period, total biomass increased significantly by 90% to ∼305 mg C m −3 in the high CO 2 treatment while the ambient pCO 2 control showed no net gains. Phaeocystis spp. exhibited the greatest response to the high CO 2 treatment, increasing by 330%, from ∼50 mg C m −3 to over 200 mg C m −3 and contributing ∼70% of the total biomass. Taken together, the results of our microcosm experiment and analysis of the time series suggest that a future high CO 2 scenario may favour dominance of Phaeocystis spp. during the spring bloom. This has significant implications for the formation of hypoxic zones and the alteration of food web structure including inhibitory feeding effects and lowered fecundity in many copepod species

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    corecore