12 research outputs found

    Heat and drought impact on carbon exchange in an age-sequence of temperate pine forests

    Get PDF
    Background Most North American temperate forests are plantation or regrowth forests, which are actively managed. These forests are in different stages of their growth cycles and their ability to sequester atmospheric carbon is affected by extreme weather events. In this study, the impact of heat and drought events on carbon sequestration in an age-sequence (80, 45, and 17 years as of 2019) of eastern white pine (Pinus strobus L.) forests in southern Ontario, Canada was examined using eddy covariance flux measurements from 2003 to 2019. Results Over the 17-year study period, the mean annual values of net ecosystem productivity (NEP) were 180 +/- 96, 538 +/- 177 and 64 +/- 165 g C m(-2) yr(-1) in the 80-, 45- and 17-year-old stands, respectively, with the highest annual carbon sequestration rate observed in the 45-year-old stand. We found that air temperature (Ta) was the dominant control on NEP in all three different-aged stands and drought, which was a limiting factor for both gross ecosystem productivity (GEP) and ecosystems respiration (RE), had a smaller impact on NEP. However, the simultaneous occurrence of heat and drought events during the early growing seasons or over the consecutive years had a significant negative impact on annual NEP in all three forests. We observed a similar trend of NEP decline in all three stands over three consecutive years that experienced extreme weather events, with 2016 being a hot and dry, 2017 being a dry, and 2018 being a hot year. The youngest stand became a net source of carbon for all three of these years and the oldest stand became a small source of carbon for the first time in 2018 since observations started in 2003. However, in 2019, all three stands reverted to annual net carbon sinks. Conclusions Our study results indicate that the timing, frequency and concurrent or consecutive occurrence of extreme weather events may have significant implications for carbon sequestration in temperate conifer forests in Eastern North America. This study is one of few globally available to provide long-term observational data on carbon exchanges in different-aged temperate plantation forests. It highlights interannual variability in carbon fluxes and enhances our understanding of the responses of these forest ecosystems to extreme weather events. Study results will help in developing climate resilient and sustainable forestry practices to offset atmospheric greenhouse gas emissions and improving simulation of carbon exchange processes in terrestrial ecosystem models

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF
    The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.Peer reviewe

    Revealing how intra- and inter-annual variability of carbon uptake (GPP) affects wood cell biomass in an eastern white pine forest

    No full text
    Forests are major terrestrial carbon (C) sinks and play a crucial role in climate change mitigation. Despite extensive studies on forest C sequestration, the relationship between seasonal C uptake and its allocation to woody biomass is poorly understood. Here we used a novel dendro-anatomical approach to investigate the relationships between climate variability, C uptake, and woody biomass growth in an 80 year-old eastern white pine ( Pinus strobus ) plantation forest in Ontario, Canada. We used eddy covariance (EC) gross primary productivity (GPP) from 2003–2018 and woody biomass estimated from chronologies of cell wall area (CWA, a proxy for C storage in individual wood cells) and ring wall area (RWA) for earlywood (EW) and latewood (LW) from 1970–2018. Warm temperatures in early spring and high precipitation in mid-spring and summer positively and strongly affected GPP, while high temperature and high vapor pressure deficit in the summer had a negative effect. From 2003 to 2018, there was a steady increase in both GPP and woody cell biomass. Moreover, we found strong positive correlations between GPP and CWA both in EW (May—July GPP, r = 0.65) and LW (July—August GPP, r = 0.89). Strong positive correlations were also found between GPP and RWA both in EW and LW (April—September, r = ⩾ 0.79). All these associations were stronger than the association between annual GPP and tree-ring width ( r = 0.61) used in previous studies. By increasing the resolution of tree-ring analysis to xylem-cell level, we captured intra-annual variability in biomass accumulation. We demonstrated a strong control of seasonal C assimilation (source) over C accumulation in woody biomass at this site. Coupling high-resolution EC fluxes (GPP) and wood anatomical measurements can help to reduce existing uncertainties on C source-sink relationships, opening new perspectives in the study of the C cycle in forests

    How deep does consciousness go? Descartes, Nyaya, Psychoanalysis, Patanjali and the Mimamsaka Ramanuja on mind-ing

    Full text link
    © 2014 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. The response of the terrestrial carbon cycle to climate change is among the largest uncertainties affecting future climate change projections. The feedback between the terrestrial carbon cycle and climate is partly determined by changes in the turnover time of carbon in land ecosystems, which in turn is an ecosystem property that emerges from the interplay between climate, soil and vegetation type. Here we present a global, spatially explicit and observation-based assessment of whole-ecosystem carbon turnover times that combines new estimates of vegetation and soil organic carbon stocks and fluxes. We find that the overall mean global carbon turnover time is years (95 per cent confidence interval). On average, carbon resides in the vegetation and soil near the Equator for a shorter time than at latitudes north of 75° north (mean turnover times of 15 and 255 years, respectively). We identify a clear dependence of the turnover time on temperature, as expected from our present understanding of temperature controls on ecosystem dynamics. Surprisingly, our analysis also reveals a similarly strong association between turnover time and precipitation. Moreover, we find that the ecosystem carbon turnover times simulated by state-of-the-art coupled climate/carbon-cycle models vary widely and that numerical simulations, on average, tend to underestimate the global carbon turnover time by 36 per cent. The models show stronger spatial relationships with temperature than do observation-based estimates, but generally do not reproduce the strong relationships with precipitation and predict faster carbon turnover in many semi-arid regions. Our findings suggest that future climate/carbon-cycle feedbacks may depend more strongly on changes in the hydrological cycle than is expected at present and is considered in Earth system models
    corecore