2,819 research outputs found

    Role of Anomalous Water Constraints in the Efficacy of Pharmaceuticals Probed by 1H Solid‐State NMR

    Full text link
    Water plays a complex and central role in determining the structural and reactive properties in numerous chemical systems. In crystalline materials with structural water, the primary focus is often to relate hydrogen bonding motifs to functional properties such as solubility, which is highly relevant in pharmaceutical applications. Nevertheless, understanding the full electrostatic landscape is necessary for a complete structure‐function picture. Herein, a combination of tools including 1H magic angle spinning NMR and X‐ray crystallography are employed to evaluate the local landscape of water in crystalline hydrates. Two hydrates of an anti‐leukemia drug mercaptopurine, which exhibit dramatically different dehydration temperatures (by 90 °C) and a three‐fold difference in the in vivo bioavailability, are compared. The results identify an electrosteric caging mechanism for a kinetically trapped water in the hemihydrate form, which is responsible for the dramatic differences in properties.1H chemical shift tensors are valuable in the structural and dynamical studies of a variety of materials, and are directly measurable with fast MAS spinning experiments. The use of these novel techniques to reveal the structural differences water can adopt in pharmaceutical hydrates is demonstrated.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138433/1/slct201701547_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138433/2/slct201701547-sup-0001-misc_information.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138433/3/slct201701547.pd

    Higgs Decays in the Low Scale Type I See-Saw Model

    Full text link
    The couplings of the low scale type I see-saw model are severely constrained by the requirement of reproducing the correct neutrino mass and mixing parameters, by the non-observation of lepton number and charged lepton flavour violating processes and by electroweak precision data. We show that all these constraints still allow for the possibility of an exotic Higgs decay channel into a light neutrino and a heavy neutrino with a sizable branching ratio. We also estimate the prospects to observe this decay at the LHC and discuss its complementarity to the indirect probes of the low scale type I see-saw model from experiments searching for the Ό→eÎł\mu\to e\gamma decay.Comment: 15 pages, 8 figures; references added and results unchanged; matched with the published version on PL

    Wind Observations of Wave Heating and/or Particle Energization at Supercritical Interplanetary Shocks

    Get PDF
    We present the first observations at supercritical interplanetary shocks of large amplitude (> 100 mV/m pk-pk) solitary waves, approx.30 mV/m pk-pk waves exhibiting characteristics consistent with electron Bernstein waves, and > 20 nT pk-pk electromagnetic lower hybrid-like waves, with simultaneous evidence for wave heating and particle energization. The solitary waves and the Bernstein-like waves were likely due to instabilities driven by the free energy provided by reflected ions [Wilson III et al., 2010]. They were associated with strong particle heating in both the electrons and ions. We also show a case example of parallel electron energization and perpendicular ion heating due to a electromagnetic lower hybrid-like wave. Both studies provide the first experimental evidence of wave heating and/or particle energization at interplanetary shocks. Our experimental results, together with the results of recent Vlasov [Petkaki and Freeman, 2008] and PIC [Matsukyo and Scholer, 2006] simulations using realistic mass ratios provide new evidence to suggest that the importance of wave-particle dissipation at shocks may be greater than previously thought

    Observations of Electromagnetic Whistler Precursors at Supercritical Interplanetary Shocks

    Get PDF
    We present observations of electromagnetic precursor waves, identified as whistler mode waves, at supercritical interplanetary shocks using the Wind search coil magnetometer. The precursors propagate obliquely with respect to the local magnetic field, shock normal vector, solar wind velocity, and they are not phase standing structures. All are right-hand polarized with respect to the magnetic field (spacecraft frame), and all but one are right-hand polarized with respect to the shock normal vector in the normal incidence frame. They have rest frame frequencies f(sub ci) < f much < f(sub ce) and wave numbers 0.02 approx < k rho (sub ce) approx <. 5.0. Particle distributions show signatures of specularly reflected gyrating ions, which may be a source of free energy for the observed modes. In one event, we simultaneously observe perpendicular ion heating and parallel electron acceleration, consistent with wave heating/acceleration due to these waves. Al though the precursors can have delta B/B(sub o) as large as 2, fluxgate magnetometer measurements show relatively laminar shock transitions in three of the four events

    Muon conversion to electron in nuclei in type-I seesaw models

    Full text link
    We compute the muon to electron conversion in the type-I seesaw model, as a function of the right-handed neutrino mixings and masses. The results are compared with previous computations in the literature. We determine the definite predictions resulting for the ratios between the muon to electron conversion rate for a given nucleus and the rate of two other processes which also involve a mu-e flavour transition: mu -> e gamma and mu -> eee. For a quasi-degenerate mass spectrum of right-handed neutrino masses -which is the most natural scenario leading to observable rates- those ratios depend only on the seesaw mass scale, offering a quite interesting testing ground. In the case of sterile neutrinos heavier than the electroweak scale, these ratios vanish typically for a mass scale of order a few TeV. Furthermore, the analysis performed here is also valid down to very light masses. It turns out that planned mu -> e conversion experiments would be sensitive to masses as low as 2 MeV. Taking into account other experimental constraints, we show that future mu -> e conversion experiments will be fully relevant to detect or constrain sterile neutrino scenarios in the 2 GeV-1000 TeV mass range.Comment: 32 pages 14 figures, references added and some minor precisions; results unchange

    The mu - e Conversion in Nuclei, mu --> e gamma, mu --> 3e Decays and TeV Scale See-Saw Scenarios of Neutrino Mass Generation

    Get PDF
    We perform a detailed analysis of lepton flavour violation (LFV) within minimal see-saw type extensions of the Standard Model (SM), which give a viable mechanism of neutrino mass generation and provide new particle content at the electroweak scale. We focus, mainly, on predictions and constraints set on each scenario from mu --> e gamma, mu --> 3e and mu - e conversion in the nuclei. In this class of models, the flavour structure of the Yukawa couplings between the additional scalar and fermion representations and the SM leptons is highly constrained by neutrino oscillation measurements. In particular, we show that in some regions of the parameters space of type I and type II see-saw models, the Dirac and Majorana phases of the neutrino mixing matrix, the ordering and hierarchy of the active neutrino mass spectrum as well as the value of the reactor mixing angle theta_{13} may considerably affect the size of the LFV observables. The interplay of the latter clearly allows to discriminate among the different low energy see-saw possibilities.Comment: Expressions for the factors |C_{me}|^2 and |C_{mu3e}|^2 in the mu-e conversion and mu-->3e decay rates, eqs. (36) and (49), respectively, corrected; results in subsections 2.2 and 2.3 quantitatively changed, qualitatively remain the same; figures 2, 3, 4 and 5 replace

    Omics analyses and biochemical study of Phlebiopsis gigantea elucidate its degradation strategy of wood extractives

    Get PDF
    14 påginas.- 6 figuras. 1 tabla.- 50 referencias.- Supplementary Information Te online version contains supplementary material available at https://doi.org/10.1038/s41598-021-91756-5Wood extractives, solvent-soluble fractions of woody biomass, are considered to be a factor impeding or excluding fungal colonization on the freshly harvested conifers. Among wood decay fungi, the basidiomycete Phlebiopsis gigantea has evolved a unique enzyme system to efficiently transform or degrade conifer extractives but little is known about the mechanism(s). In this study, to clarify the mechanism(s) of softwood degradation, we examined the transcriptome, proteome, and metabolome of P. gigantea when grown on defined media containing microcrystalline cellulose and pine sapwood extractives. Beyond the conventional enzymes often associated with cellulose, hemicellulose and lignin degradation, an array of enzymes implicated in the metabolism of softwood lipophilic extractives such as fatty and resin acids, steroids and glycerides was significantly up-regulated. Among these, a highly expressed and inducible lipase is likely responsible for lipophilic extractive degradation, based on its extracellular location and our characterization of the recombinant enzyme. Our results provide insight into physiological roles of extractives in the interaction between wood and fungi. © 2021, The Author(s).The work partly conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, was supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Research was also supported by NSF Grants 1457695 and 1457721 to J.M.B. and D.C., respectively, by CSIC project 201740E071 to A.G. and by JSPS Grant-in-Aid for Scientific Research 19K15881, JST-ACTX PJ2519A059 and 2017 Feasibility Study Program of the Frontier Chemistry Center, Faculty of Engineering, Hokkaido University to C.H.Peer reviewe

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+→Ό+ÎœW^+ \rightarrow \mu^+\nu and W−→Ό−ΜW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT
    • 

    corecore