1,434 research outputs found

    A hitchhikers guide to the Galápagos: co-phylogeography of Galápagos mockingbirds and their parasites

    Get PDF
    Background: Parasites are evolutionary hitchhikers whose phylogenies often track the evolutionary history of their hosts. Incongruence in the evolutionary history of closely associated lineages can be explained through a variety of possible events including host switching and host independent speciation. However, in recently diverged lineages stochastic population processes, such as retention of ancestral polymorphism or secondary contact, can also explain discordant genealogies, even in fully co-speciating taxa. The relatively simple biogeographic arrangement of the Galapagos archipelago, compared with mainland biomes, provides a framework to identify stochastic and evolutionary informative components of genealogic data in these recently diverged organisms. Results: Mitochondrial DNA sequences were obtained for four species of Galapagos mockingbirds and three sympatric species of ectoparasites - two louse and one mite species. These data were complemented with nuclear EF1 alpha sequences in selected samples of parasites and with information from microsatellite loci in the mockingbirds. Mitochondrial sequence data revealed differences in population genetic diversity between all taxa and varying degrees of topological congruence between host and parasite lineages. A very low level of genetic variability and lack of congruence was found in one of the louse parasites, which was excluded from subsequent joint analysis of mitochondrial data. The reconciled multi-species tree obtained from the analysis is congruent with both the nuclear data and the geological history of the islands. Conclusions: The gene genealogies of Galapagos mockingbirds and two of their ectoparasites show strong phylogeographic correlations, with instances of incongruence mostly explained by ancestral genetic polymorphism. A third parasite genealogy shows low levels of genetic diversity and little evidence of co-phylogeny with their hosts. These differences can mostly be explained by variation in life-history characteristics, primarily host specificity and dispersal capabilities. We show that pooling genetic data from organisms living in close ecological association reveals a more accurate phylogeographic history for these taxa. Our results have implications for the conservation and taxonomy of Galapagos mockingbirds and their parasites

    Numerical Hermitian Yang-Mills Connections and Kahler Cone Substructure

    Get PDF
    We further develop the numerical algorithm for computing the gauge connection of slope-stable holomorphic vector bundles on Calabi-Yau manifolds. In particular, recent work on the generalized Donaldson algorithm is extended to bundles with Kahler cone substructure on manifolds with h^{1,1}>1. Since the computation depends only on a one-dimensional ray in the Kahler moduli space, it can probe slope-stability regardless of the size of h^{1,1}. Suitably normalized error measures are introduced to quantitatively compare results for different directions in Kahler moduli space. A significantly improved numerical integration procedure based on adaptive refinements is described and implemented. Finally, an efficient numerical check is proposed for determining whether or not a vector bundle is slope-stable without computing its full connection.Comment: 38 pages, 10 figure

    Post-hoc motion correction for coronary computed tomography angiography without additional radiation dose - Improved image quality and interpretability for “free”

    Full text link
    Objective To evaluate the impact of a motion-correction (MC) algorithm, applicable post-hoc and not dependent on extended padding, on the image quality and interpretability of coronary computed tomography angiography (CCTA). Methods Ninety consecutive patients undergoing CCTA on a latest-generation 256-slice CT device were prospectively included. CCTA was performed with prospective electrocardiogram-triggering and the shortest possible acquisition window (without padding) at 75% of the R-R-interval. All datasets were reconstructed without and with MC of the coronaries. The latter exploits the minimal padding inherent in cardiac CT scans with this device due to data acquisition also during the short time interval needed for the tube to reach target currents and voltage (“free” multiphase). Two blinded readers independently assessed image quality on a 4-point Likert scale for all segments. Results A total of 1,030 coronary segments were evaluated. Application of MC both with automatic and manual coronary centerline tracking resulted in a significant improvement in image quality as compared to the standard reconstruction without MC (mean Likert score 3.67 [3.50;3.81] vs 3.58 [3.40;3.73], P = 0.005, and 3.7 [3.55;3.82] vs 3.58 [3.40;3.73], P < 0.001, respectively). Furthermore, MC significantly reduced the proportion of non-evaluable segments and patients with at least one non-evaluable coronary segment from 2% to as low as 0.3%, and from 14% to as low as 3%. Reduction of motion artifacts was predominantly observed in the right coronary artery. Conclusions A post-hoc device-specific MC algorithm improves image quality and interpretability of prospectively electrocardiogram-triggered CCTA and reduces the proportion of non-evaluable scans without any additional radiation dose exposure

    Angular dependence of photoemission time delay in helium

    Full text link
    Time delays of electrons emitted from an isotropic initial state with the absorption of a single photon and leaving behind an isotropic ion are angle independent. Using an interferometric method involving XUV attosecond pulse trains and an IR-probe field in combination with a detection scheme, which allows for full three-dimensional momentum resolution, we show that measured time delays between electrons liberated from the 1s2 spherically symmetric ground state of helium depend on the emission direction of the electrons relative to the common linear polarization axis of the ionizing XUV light and the IR-probing field. Such time delay anisotropy, for which we measure values as large as 60 as, is caused by the interplay between final quantum states with different symmetry and arises naturally whenever the photoionization process involves the exchange of more than one photon. With the support of accurate theoretical models, the angular dependence of the time delay is attributed to small phase differences that are induced in the laser-driven continuum transitions to the final states. Since most measurement techniques tracing attosecond electron dynamics involve the exchange of at least two photons, this is a general and significant effect that must be taken into account in all measurements of time delays involving photoionization processesS.H, C.C, L.G., and U.K. acknowledge support by the ERC advanced Grant No. ERC-2012-ADG_20120216 within the seventh framework program of the European Union and by the NCCR MUST, funded by the Swiss National Science Foundation. M.L. acknowledges support from the ETH Zurich Postdoctoral Fellowship Program. A.J.G., L.A., and F.M. acknowledge the support from the European Research Council under the ERC Grant No. 290853 XCHEM, from the European COST Action No. CM1204 XLIC, the MINECO Project No. FIS2013-42002-R, the ERA-Chemistry Project No. PIM2010EEC- 00751, and the European Grant No. MC-ITN CORINF. Calculations were performed at the Centro de Computacion Científica of the Universidad Autónoma de Madrid (CC-UAM) and the Barcelona Supercomputing Center (BSC). I.I. and A.S.K. acknowledge support of the Australian Research Council (Grant No. DP120101805) and the use of the National Computational Infrastructure Facility. J.M.D. acknowledges support from the Swedish Research Grants No. 2013-344 and No. 2014-3724. E.L. acknowledges support from the Swedish Research Council, Grant No. 2012-3668. Moreover, this research was supported in part by the Kavli Institute for Theoretical Physics (National Science Foundation under Grant No. NSF PHY11-25915) and by NORDITA, the Nordic Institute for Theoretical Physic

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30
    corecore