41 research outputs found

    Characterization and Analysis of Plastic Instability in an Ultrafine‐Grained Medium Mn TRIP Steel

    Get PDF
    Herein, the mechanical and magnetic behavior of an ultrafine-grained (UFG) medium manganese (Mn) transformation-induced plasticity (TRIP) steel is focused on in its plastic instability. The in situ methods of digital image correlation (DIC) and magnetic Barkhausen noise (MBN) are used to macroscopically characterize the propagation of the Lüders band (stretcher–strain marks) and the evolution of MBN activities during quasistatic tensile deformation. The evolution of microstructure during the plastic instability is investigated ex situ using X-Ray diffraction (XRD) and transmission electron microscopy (TEM) for selected plastic strain states. It is showed in the results that the plastic instability of this steel is associated with an increase of hardness and enrichment of dislocation density, which can also amplify the MBN signal, while the derived coercivity behaves reversely on an overall trend due to work hardening. The different stress response of the medium Mn steel is closely related to the kinetic martensite microstructure, which in turn modifies the domain–structure response. Thus, the MBN can be used as a potential means for nondestructive evaluation (NDE) for the strengthening of the UFG medium Mn TRIP steel

    FeMn with Phases of a Degradable Ag Alloy for Residue-Free and Adapted Bioresorbability

    Get PDF
    The development of bioresorbable materials for temporary implantation enables progress in medical technology. Iron (Fe)-based degradable materials are biocompatible and exhibit good mechanical properties, but their degradation rate is low. Aside from alloying with Manganese (Mn), the creation of phases with high electrochemical potential such as silver (Ag) phases to cause the anodic dissolution of FeMn is promising. However, to enable residue-free dissolution, the Ag needs to be modified. This concern is addressed, as FeMn modified with a degradable Ag-Calcium-Lanthanum (AgCaLa) alloy is investigated. The electrochemical properties and the degradation behavior are determined via a static immersion test. The local differences in electrochemical potential increase the degradation rate (low pH values), and the formation of gaps around the Ag phases (neutral pH values) demonstrates the benefit of the strategy. Nevertheless, the formation of corrosion-inhibiting layers avoids an increased degradation rate under a neutral pH value. The complete bioresorption of the material is possible since the phases of the degradable AgCaLa alloy dissolve after the FeMn matrix. Cell viability tests reveal biocompatibility, and the antibacterial activity of the degradation supernatant is observed. Thus, FeMn modified with degradable AgCaLa phases is promising as a bioresorbable material if corrosion-inhibiting layers can be diminished

    To which world regions does the valence–dominance model of social perception apply?

    Get PDF
    Over the past 10 years, Oosterhof and Todorov’s valence–dominance model has emerged as the most prominent account of how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social judgements of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov’s methodology across 11 world regions, 41 countries and 11,570 participants. When we used Oosterhof and Todorov’s original analysis strategy, the valence–dominance model generalized across regions. When we used an alternative methodology to allow for correlated dimensions, we observed much less generalization. Collectively, these results suggest that, while the valence–dominance model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed when we use different extraction methods and correlate and rotate the dimension reduction solution.C.L. was supported by the Vienna Science and Technology Fund (WWTF VRG13-007); L.M.D. was supported by ERC 647910 (KINSHIP); D.I.B. and N.I. received funding from CONICET, Argentina; L.K., F.K. and Á. Putz were supported by the European Social Fund (EFOP-3.6.1.-16-2016-00004; ‘Comprehensive Development for Implementing Smart Specialization Strategies at the University of Pécs’). K.U. and E. Vergauwe were supported by a grant from the Swiss National Science Foundation (PZ00P1_154911 to E. Vergauwe). T.G. is supported by the Social Sciences and Humanities Research Council of Canada (SSHRC). M.A.V. was supported by grants 2016-T1/SOC-1395 (Comunidad de Madrid) and PSI2017-85159-P (AEI/FEDER UE). K.B. was supported by a grant from the National Science Centre, Poland (number 2015/19/D/HS6/00641). J. Bonick and J.W.L. were supported by the Joep Lange Institute. G.B. was supported by the Slovak Research and Development Agency (APVV-17-0418). H.I.J. and E.S. were supported by a French National Research Agency ‘Investissements d’Avenir’ programme grant (ANR-15-IDEX-02). T.D.G. was supported by an Australian Government Research Training Program Scholarship. The Raipur Group is thankful to: (1) the University Grants Commission, New Delhi, India for the research grants received through its SAP-DRS (Phase-III) scheme sanctioned to the School of Studies in Life Science; and (2) the Center for Translational Chronobiology at the School of Studies in Life Science, PRSU, Raipur, India for providing logistical support. K. Ask was supported by a small grant from the Department of Psychology, University of Gothenburg. Y.Q. was supported by grants from the Beijing Natural Science Foundation (5184035) and CAS Key Laboratory of Behavioral Science, Institute of Psychology. N.A.C. was supported by the National Science Foundation Graduate Research Fellowship (R010138018). We acknowledge the following research assistants: J. Muriithi and J. Ngugi (United States International University Africa); E. Adamo, D. Cafaro, V. Ciambrone, F. Dolce and E. Tolomeo (Magna Græcia University of Catanzaro); E. De Stefano (University of Padova); S. A. Escobar Abadia (University of Lincoln); L. E. Grimstad (Norwegian School of Economics (NHH)); L. C. Zamora (Franklin and Marshall College); R. E. Liang and R. C. Lo (Universiti Tunku Abdul Rahman); A. Short and L. Allen (Massey University, New Zealand), A. Ateş, E. Güneş and S. Can Özdemir (Boğaziçi University); I. Pedersen and T. Roos (Åbo Akademi University); N. Paetz (Escuela de Comunicación Mónica Herrera); J. Green (University of Gothenburg); M. Krainz (University of Vienna, Austria); and B. Todorova (University of Vienna, Austria). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.https://www.nature.com/nathumbehav/am2023BiochemistryGeneticsMicrobiology and Plant Patholog

    To which world regions does the valence–dominance model of social perception apply?

    Get PDF
    Over the past 10 years, Oosterhof and Todorov’s valence–dominance model has emerged as the most prominent account of how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social judgements of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov’s methodology across 11 world regions, 41 countries and 11,570 participants. When we used Oosterhof and Todorov’s original analysis strategy, the valence–dominance model generalized across regions. When we used an alternative methodology to allow for correlated dimensions, we observed much less generalization. Collectively, these results suggest that, while the valence–dominance model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed when we use different extraction methods and correlate and rotate the dimension reduction solution

    A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic.

    Get PDF
    The COVID-19 pandemic has increased negative emotions and decreased positive emotions globally. Left unchecked, these emotional changes might have a wide array of adverse impacts. To reduce negative emotions and increase positive emotions, we tested the effectiveness of reappraisal, an emotion-regulation strategy that modifies how one thinks about a situation. Participants from 87 countries and regions (n = 21,644) were randomly assigned to one of two brief reappraisal interventions (reconstrual or repurposing) or one of two control conditions (active or passive). Results revealed that both reappraisal interventions (vesus both control conditions) consistently reduced negative emotions and increased positive emotions across different measures. Reconstrual and repurposing interventions had similar effects. Importantly, planned exploratory analyses indicated that reappraisal interventions did not reduce intentions to practice preventive health behaviours. The findings demonstrate the viability of creating scalable, low-cost interventions for use around the world

    Anisotropic Mechanical and Microstructural Properties of a Ti-6Al-7Nb Alloy for Biomedical Applications Manufactured via Laser Powder Bed Fusion

    No full text
    Through tailoring the geometry and design of biomaterials, additive manufacturing is revolutionizing the production of metallic patient-specific implants, e.g., the Ti-6Al-7Nb alloy. Unfortunately, studies investigating this alloy showed that additively produced samples exhibit anisotropic microstructures. This anisotropy compromises the mechanical properties and complicates the loading state in the implant. Moreover, the minimum requirements as specified per designated standards such as ISO 5832-11 are not met. The remedy to this problem is performing a conventional heat treatment. As this route requires energy, infrastructure, labor, and expertise, which in turn mean time and money, many of the additive manufacturing benefits are negated. Thus, the goal of this work was to achieve better isotropy by applying only adapted additive manufacturing process parameters, specifically focusing on the build orientations. In this work, samples orientated in 90°, 45°, and 0° directions relative to the building platform were manufactured and tested. These tests included mechanical (tensile and fatigue tests) as well as microstructural analyses (SEM and EBSD). Subsequently, the results of these tests such as fractography were correlated with the acquired mechanical properties. These showed that 90°-aligned samples performed best under fatigue load and that all requirements specified by the standard regarding monotonic load were met

    Additively Manufactured Nested and Non-Nested Cellular Solids for Effective Stress Distribution and Thermal Insulation Applications: An Experimental and Finite Element Analysis Study

    No full text
    In this study, the design, additive manufacturing and experimental as well as simulation investigation of mechanical and thermal properties of cellular solids are addressed. For this, two cellular solids having nested and non-nested structures are designed and additively manufactured via laser powder bed fusion. The primary objective is to design cellular solids which absorb a significant amount of energy upon impact loading without transmitting a high amount of stress into the cellular solids. Therefore, compression testing of the two cellular solids is performed. The nested and non-nested cellular solids show similar energy absorption properties; however, the nested cellular solid transmits a lower amount of stress in the cellular structure compared to the non-nested cellular solid. The experimentally measured strain (by DIC) in the interior region of the nested cellular solid is lower despite a higher value of externally imposed compressive strain. The second objective of this study is to determine the thermal insulation properties of cellular solids. For measuring the thermal insulation properties, the samples are placed on a hot plate; and the surface temperature distribution is measured by an infrared camera. The thermal insulating performance of both cellular types is sufficient for temperatures exceeding 100 °C. However, the thermal insulating performance of a non-nested cellular solid is slightly better than that of the nested cellular solid. Additional thermal simulations predict a relatively higher temperature distribution on the cellular solid surfaces compared to experimental results. The simulated residual stress shows a similar distribution for both types, but the magnitude of residual stress is different for the cellular solids upon cooling from different temperatures of the hot plate

    Additive Manufacturing and Mechanical Properties of Auxetic and Non-Auxetic Ti<sub>24</sub>Nb<sub>4</sub>Zr<sub>8</sub>Sn Biomedical Stents: A Combined Experimental and Computational Modelling Approach

    No full text
    The effect of plaque deposition (atherosclerosis) on blood flow behaviour is investigated via computational fluid dynamics and structural mechanics simulations. To mitigate the narrowing of coronary artery atherosclerosis (stenosis), the computational modelling of auxetic and non-auxetic stents was performed in this study to minimise or even avoid these deposition agents in the future. Computational modelling was performed in unrestricted (open) conditions and restricted (in an artery) conditions. Finally, stent designs were produced by additive manufacturing, and mechanical testing of the stents was undertaken. Auxetic stent 1 and auxetic stent 2 exhibit very little foreshortening and radial recoil in unrestricted deployment conditions compared to non-auxetic stent 3. However, stent 2 shows structural instability (strut failure) during unrestricted deployment conditions. For the restricted deployment condition, stent 1 shows a higher radial recoil compared to stent 3. In the tensile test simulations, short elongation for stent 1 due to strut failure is demonstrated, whereas no structural instability is noticed for stent 2 and stent 3 until 0.5 (mm/mm) strain. The as-built samples show a significant thickening of the struts of the stents resulting in short elongations during tensile testing compared to the simulations (stent 2 and stent 3). A modelling framework for the stent deployment system that enables the selection of appropriate stent designs before in vivo testing is required. This leads to the acceleration of the development process and a reduction in time, resulting in less material wastage. The modelling framework shall be useful for doctors designing patient-specific stents

    Requirements for Processing High-Strength AlZnMgCu Alloys with PBF-LB/M to Achieve Crack-Free and Dense Parts

    No full text
    Processing aluminum alloys employing powder bed fusion of metals (PBF-LB/M) is becoming more attractive for the industry, especially if lightweight applications are needed. Unfortunately, high-strength aluminum alloys such as AA7075 are prone to hot cracking during PBF-LB/M, as well as welding. Both a large solidification range promoted by the alloying elements zinc and copper and a high thermal gradient accompanied with the manufacturing process conditions lead to or favor hot cracking. In the present study, a simple method for modifying the powder surface with titanium carbide nanoparticles (NPs) as a nucleating agent is aimed. The effect on the microstructure with different amounts of the nucleating agent is shown. For the aluminum alloy 7075 with 2.5 ma% titanium carbide nanoparticles, manufactured via PBF-LB/M, crack-free samples with a refined microstructure having no discernible melt pool boundaries and columnar grains are observed. After using a two-step ageing heat treatment, ultimate tensile strengths up to 465 MPa and an 8.9% elongation at break are achieved. Furthermore, it is demonstrated that not all nanoparticles used remain in the melt pool during PBF-LB/M

    Heat Treatments of Metastable β Titanium Alloy Ti-24Nb-4Zr-8Sn Processed by Laser Powder Bed Fusion

    No full text
    Titanium alloys, especially β alloys, are favorable as implant materials due to their promising combination of low Young’s modulus, high strength, corrosion resistance, and biocompatibility. In particular, the low Young’s moduli reduce the risk of stress shielding and implant loosening. The processing of Ti-24Nb-4Zr-8Sn through laser powder bed fusion is presented. The specimens were heat-treated, and the microstructure was investigated using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The mechanical properties were determined by hardness and tensile tests. The microstructures reveal a mainly β microstructure with α″ formation for high cooling rates and α precipitates after moderate cooling rates or aging. The as-built and α″ phase containing conditions exhibit a hardness around 225 HV5, yield strengths (YS) from 340 to 490 MPa, ultimate tensile strengths (UTS) around 706 MPa, fracture elongations around 20%, and Young’s moduli about 50 GPa. The α precipitates containing conditions reveal a hardness around 297 HV5, YS around 812 MPa, UTS from 871 to 931 MPa, fracture elongations around 12%, and Young’s moduli about 75 GPa. Ti-24Nb-4Zr-8Sn exhibits, depending on the heat treatment, promising properties regarding the material behavior and the opportunity to tailor the mechanical performance as a low modulus, high strength implant material
    corecore