61 research outputs found

    Transcriptional Cis-Regulatory Elements and Trans-Factors of a Gene for the Seed Storage Protein Beta-Phaseolin From Common Bean (Phaseolus Vulgaris).

    Get PDF
    In many dicotyledons, the nutrient reserves are stored in the cotyledons. Phaseolin, 7S globulin, is the major seed protein from common bean Phaseolus vulgaris. In vitro transcription assays and gene transfer studies indicate that phaseolin gene expression is regulated primarily at the transcriptional level. In this dissertation, I studied cis- and trans-acting factors that may play a role in the transcriptional regulation of the β\beta-phaseolin gene. Gel mobility shift and exonuclease III protection assays identified four distinct DNA binding proteins, CAN, AG-1, CA-1, and TATA-box binding protein. Three CANNTG motifs, CACGTG (-248/-243), CACCTG (-163/-158), and CATATG (-100/-95), were found to be preferred target sequences of CAN. The cis-activities of CAN and AG-1 binding sites were studied systematically by substitution mutations. The results indicate that the CACGTG (G-box) motif a major positive cis-element and acts synergistically with the CACCTG motif. The results also show that AG-I binding sites function as major positive (-191/-182) and negative (-376/-367,-356/-347) cis-elements. These results led me to hypothesize that CAN and AG-1 play a major role in the transcriptional regulation of the β\beta-phaseolin gene. As a first step to understand the molecular nature of CAN, a bean seed cDNA library was constructed and screened for proteins capable of binding to oligonucleotides containjng the phaseolin G-box. Three positive clones were identified and further studied. DNA sequencing analyses indicate that the three cDNAs encode two homologous proteins that belong to the basic region/helix-loop-llelix (bHLH) protein family. Gel mobility shift assays with the proteins, PG1 and PG2, expressed in E. coli indicate that the two bHLH proteins preferentially bind to the G-box among the three phaseolin E-boxes. Northern blot analysis showed that PG1 is expressed constitutively in the plant and that PG2 is expressed primarily in the root. Based on these and other results, the transcriptional regulation of the β\beta-phaseolin gene is discussed in relationship to the embryogenesis of common bean

    A Role for the Cysteine-Rich 10 kDa Prolamin in Protein Body I Formation in Rice

    Get PDF
    The rice prolamins consist of cysteine-rich 10 kDa (CysR10), 14 kDa (CysR14) and 16 kDa (CysR16) molecular species and a cysteine-poor 13 kDa (CysP13) polypeptide. These storage proteins form protein bodies (PBs) composed of single spherical intracisternal inclusions assembled within the lumen of the rough endoplasmic reticulum. Immunofluorescence and immunoelectron microscopy demonstrated that CysR10 and CysP13 were asymmetrically distributed within the PBs, with the former concentrated at the electron-dense center core region and the latter distributed mainly to the electron-lucent peripheral region. These results together with temporal expression data showed that the formation of prolamin-containing PB-I in the wild-type endosperm was initiated by the accumulation of CysR10 to form the center core. In mutants deficient for cysteine-rich prolamins, the typical PB-I structures containing the electron-dense center core were not observed, and instead were replaced by irregularly shaped, electron-lucent, hypertrophied PBs. Similar, deformed PBs were observed in a CysR10 RNA interference plant line. These results suggest that CysR10, through its formation of the central core and its possible interaction with other cysteine-rich prolamins, is required for tight packaging of the proteins into a compact spherical structure

    Oxidative protein folding: Selective pressure for prolamin evolution in rice

    Get PDF
    During seed development, endosperm cells of highly productive cereals, including rice, synthesize disulfide-rich proteins in large amounts and deposit them into storage organelles. Disulfide bond formation involves electron transfer and generates H2O2 as a by-product. To ensure proper development and maturation of seeds, the endosperm cells must supply large amounts of oxidizing equivalents to dithiols in nascent proteins in a controlled manner. This review compares multiple oxidative protein folding systems in yeast, cultured human cells, and rice endosperm. We discuss possible roles of ERO1, other sulfhydryl oxidases, and the protein disulfide isomerase family in the formation of disulfide bonds in storage proteins and the development of protein bodies. Rice prolamins, encoded by a multigene family, are divided into Cys-rich and Cys-depleted subgroups. We discuss the potential importance of disulfide bond formation in the evolution of the prolamin family in japonica rice

    Enhancing evidence-informed policymaking in medicine and healthcare: stakeholder involvement in the Commons Project for rare diseases in Japan

    Get PDF
    Kogetsu A., Isono M., Aikyo T., et al. Enhancing evidence-informed policymaking in medicine and healthcare: stakeholder involvement in the Commons Project for rare diseases in Japan. Research Involvement and Engagement 9, 107 (2023); https://doi.org/10.1186/s40900-023-00515-5.Background: Although stakeholder involvement in policymaking is attracting attention in the fields of medicine and healthcare, a practical methodology has not yet been established. Rare-disease policy, specifically research priority setting for the allocation of limited research resources, is an area where evidence generation through stakeholder involvement is expected to be effective. We generated evidence for rare-disease policymaking through stakeholder involvement and explored effective collaboration among stakeholders. Methods: We constructed a space called ‘Evidence-generating Commons’, where patients, family members, researchers, and former policymakers can share their knowledge and experiences and engage in continual deliberations on evidence generation. Ten rare diseases were consequently represented. In the ‘Commons’, 25 consecutive workshops were held predominantly online, from 2019 to 2021. These workshops focused on (1) clarification of difficulties faced by rare-disease patients, (2) development and selection of criteria for priority setting, and (3) priority setting through the application of the criteria. For the first step, an on-site workshop using sticky notes was held. The data were analysed based on KJ method. For the second and third steps, workshops on specific themes were held to build consensus. The workshop agendas and methods were modified based on participants’ feedback. Results: The ‘Commons’ was established with 43 participants, resulting in positive effects such as capacity building, opportunities for interactions, mutual understanding, and empathy among the participants. The difficulties faced by patients with rare diseases were classified into 10 categories. Seven research topics were identified as priority issues to be addressed including ‘impediments to daily life’, ‘financial burden’, ‘anxiety’, and ‘burden of hospital visits’. This was performed by synthesising the results of the application of the two criteria that were particularly important to strengthen future research on rare diseases. We also clarified high-priority research topics by using criteria valued more by patients and family members than by researchers and former policymakers, and criteria with specific perspectives. Conclusion: We generated evidence for policymaking in the field of rare diseases. This study’s insights into stakeholder involvement can enhance evidence-informed policymaking. We engaged in comprehensive discussions with policymakers regarding policy implementation and planned analysis of the participants’ experiences in this project

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF
    corecore