204 research outputs found

    Are Known Cyanotoxins Involved in the Toxicity of Picoplanktonic and Filamentous North Atlantic Marine Cyanobacteria?

    Get PDF
    Eight marine cyanobacteria strains of the genera Cyanobium, Leptolyngbya, Oscillatoria, Phormidium, and Synechococcus were isolated from rocky beaches along the Atlantic Portuguese central coast and tested for ecotoxicity. Strains were identified by morphological characteristics and by the amplification and sequentiation of the 16S rDNA. Bioactivity of dichloromethane, methanol and aqueous extracts was assessed by the Artemia salina bioassay. Peptide toxin production was screened by matrix assisted laser desorption/ionization time of flight mass spectrometry. Molecular analysis of the genes involved in the production of known cyanotoxins such as microcystins, nodularins and cylindrospermopsin was also performed. Strains were toxic to the brine shrimp A. salina nauplii with aqueous extracts being more toxic than the organic ones. Although mass spectrometry analysis did not reveal the production of microcystins or other known toxic peptides, a positive result for the presence of mcyE gene was found in one Leptolyngbya strain and one Oscillatoria strain. The extensive brine shrimp mortality points to the involvement of other unknown toxins, and the presence of a fragment of genes involved in the cyanotoxin production highlight the potential risk of cyanobacteria occurrence on the Atlantic coast

    Operationalizing marketable blue carbon

    Get PDF
    The global carbon sequestration and avoided emissions potentially achieved via blue carbon is high (∼3% of annual global greenhouse gas emissions); however, it is limited by multidisciplinary and interacting uncertainties spanning the social, governance, financial, and technological dimensions. We compiled a transdisciplinary team of experts to elucidate these challenges and identify a way forward. Key actions to enhance blue carbon as a natural climate solution include improving policy and legal arrangements to ensure equitable sharing of benefits; improving stewardship by incorporating indigenous knowledge and values; clarifying property rights; improving financial approaches and accounting tools to incorporate co-benefits; developing technological solutions for measuring blue carbon sequestration at low cost; and resolving knowledge gaps regarding blue carbon cycles. Implementing these actions and operationalizing blue carbon will achieve measurable changes to atmospheric greenhouse gas concentrations, provide multiple co-benefits, and address national obligations associated with international agreements

    Nontoxic Strains of Cyanobacteria Are the Result of Major Gene Deletion Events Induced by a Transposable Element

    Get PDF
    Blooms that are formed by cyanobacteria consist of toxic and nontoxic strains. The mechanisms that result in the occurrence of nontoxic strains are enigmatic. All the nontoxic strains of the filamentous cyanobacterium Planktothrix that were isolated from 9 European countries were found to have lost 90% of a large microcystin synthetase (mcy) gene cluster that encoded the synthesis of the toxic peptide microcystin (MC). Those strains still contain the flanking regions of the mcy gene cluster along with remnants of the transposable elements that are found in between. The majority of the strains still contain a gene coding for a distinct thioesterase type II (mcyT), which is putatively involved in MC synthesis. The insertional inactivation of mcyT in an MC-producing strain resulted in the reduction of MC synthesis by 94 ± 2% (1 standard deviation). Nontoxic strains that occur in shallow lakes throughout Europe form a monophyletic lineage. A second lineage consists of strains that contain the mcy gene cluster but differ in their photosynthetic pigment composition, which is due to the occurrence of strains that contain phycocyanin or large amounts of phycoerythrin in addition to phycocyanin. Strains containing phycoerythrin typically occur in deep-stratified lakes. The rare occurrence of gene cluster deletion, paired with the evolutionary diversification of the lineages of strains that lost or still contain the mcy gene cluster, needs to be invoked in order to explain the absence or dominance of toxic cyanobacteria in various habitats

    On the Chemistry, Toxicology and Genetics of the Cyanobacterial Toxins, Microcystin, Nodularin, Saxitoxin and Cylindrospermopsin

    Get PDF
    The cyanobacteria or “blue-green algae”, as they are commonly termed, comprise a diverse group of oxygenic photosynthetic bacteria that inhabit a wide range of aquatic and terrestrial environments, and display incredible morphological diversity. Many aquatic, bloom-forming species of cyanobacteria are capable of producing biologically active secondary metabolites, which are highly toxic to humans and other animals. From a toxicological viewpoint, the cyanotoxins span four major classes: the neurotoxins, hepatotoxins, cytotoxins, and dermatoxins (irritant toxins). However, structurally they are quite diverse. Over the past decade, the biosynthesis pathways of the four major cyanotoxins: microcystin, nodularin, saxitoxin and cylindrospermopsin, have been genetically and biochemically elucidated. This review provides an overview of these biosynthesis pathways and additionally summarizes the chemistry and toxicology of these remarkable secondary metabolites

    The Cyanobacterial Hepatotoxin Microcystin Binds to Proteins and Increases the Fitness of Microcystis under Oxidative Stress Conditions

    Get PDF
    Microcystins are cyanobacterial toxins that represent a serious threat to drinking water and recreational lakes worldwide. Here, we show that microcystin fulfils an important function within cells of its natural producer Microcystis. The microcystin deficient mutant ΔmcyB showed significant changes in the accumulation of proteins, including several enzymes of the Calvin cycle, phycobiliproteins and two NADPH-dependent reductases. We have discovered that microcystin binds to a number of these proteins in vivo and that the binding is strongly enhanced under high light and oxidative stress conditions. The nature of this binding was studied using extracts of a microcystin-deficient mutant in vitro. The data obtained provided clear evidence for a covalent interaction of the toxin with cysteine residues of proteins. A detailed investigation of one of the binding partners, the large subunit of RubisCO showed a lower susceptibility to proteases in the presence of microcystin in the wild type. Finally, the mutant defective in microcystin production exhibited a clearly increased sensitivity under high light conditions and after hydrogen peroxide treatment. Taken together, our data suggest a protein-modulating role for microcystin within the producing cell, which represents a new addition to the catalogue of functions that have been discussed for microbial secondary metabolites

    Genotype × genotype interactions between the toxic cyanobacterium Microcystis and its grazer, the waterflea Daphnia

    Get PDF
    Toxic algal blooms are an important problem worldwide. The literature on toxic cyanobacteria blooms in inland waters reports widely divergent results on whether zooplankton can control cyanobacteria blooms or cyanobacteria suppress zooplankton by their toxins. Here we test whether this may be due to genotype × genotype interactions, in which interactions between the large-bodied and efficient grazer Daphnia and the widespread cyanobacterium Microcystis are not only dependent on Microcystis strain or Daphnia genotype but are specific to genotype × genotype combinations. We show that genotype × genotype interactions are important in explaining mortality in short-time exposures of Daphnia to Microcystis. These genotype × genotype interactions may result in local coadaptation and a geographic mosaic of coevolution. Genotype × genotype interactions can explain why the literature on zooplankton–cyanobacteria interactions is seemingly inconsistent, and provide hope that zooplankton can contribute to the suppression of cyanobacteria blooms in restoration projects

    Use of a Generalized Additive Model to Investigate Key Abiotic Factors Affecting Microcystin Cellular Quotas in Heavy Bloom Areas of Lake Taihu

    Get PDF
    Lake Taihu is the third largest freshwater lake in China and is suffering from serious cyanobacterial blooms with the associated drinking water contamination by microcystin (MC) for millions of citizens. So far, most studies on MCs have been limited to two small bays, while systematic research on the whole lake is lacking. To explain the variations in MC concentrations during cyanobacterial bloom, a large-scale survey at 30 sites across the lake was conducted monthly in 2008. The health risks of MC exposure were high, especially in the northern area. Both Microcystis abundance and MC cellular quotas presented positive correlations with MC concentration in the bloom seasons, suggesting that the toxic risks during Microcystis proliferations were affected by variations in both Microcystis density and MC production per Microcystis cell. Use of a powerful predictive modeling tool named generalized additive model (GAM) helped visualize significant effects of abiotic factors related to carbon fixation and proliferation of Microcystis (conductivity, dissolved inorganic carbon (DIC), water temperature and pH) on MC cellular quotas from recruitment period of Microcystis to the bloom seasons, suggesting the possible use of these factors, in addition to Microcystis abundance, as warning signs to predict toxic events in the future. The interesting relationship between macrophytes and MC cellular quotas of Microcystis (i.e., high MC cellular quotas in the presence of macrophytes) needs further investigation

    Abundant toxin-related genes in the genomes of beneficial symbionts from deep-sea hydrothermal vent mussels

    Get PDF
    Bathymodiolus mussels live in symbiosis with intracellular sulfur-oxidizing (SOX) bacteria that provide them with nutrition. We sequenced the SOX symbiont genomes from two Bathymodiolus species. Comparison of these symbiont genomes with those of their closest relatives revealed that the symbionts have undergone genome rearrangements, and up to 35% of their genes may have been acquired by horizontal gene transfer. Many of the genes specific to the symbionts were homologs of virulence genes. We discovered an abundant and diverse array of genes similar to insecticidal toxins of nematode and aphid symbionts, and toxins of pathogens such as Yersinia and Vibrio. Transcriptomics and proteomics revealed that the SOX symbionts express the toxin-related genes (TRGs) in their hosts. We hypothesize that the symbionts use these TRGs in beneficial interactions with their host, including protection against parasites. This would explain why a mutualistic symbiont would contain such a remarkable 'arsenal' of TRG
    corecore