3,997 research outputs found

    Desulfovibrio paquesii sp. nov., a hydrogenotrophic sulfate-reducing bacterium isolated from a synthesis-gas-fed bioreactor treating zinc- and sulfate-rich wastewater

    Get PDF
    A hydrogenotrophic, sulfate-reducing bacterium, designated strain SB1(T), was isolated from sulfidogenic sludge of a full-scale synthesis-gas-fed bioreactor used to remediate wastewater from a zinc smelter. Strain SB1(T) was found to be an abundant micro-organism in the sludge at the time of isolation. Hydrogen, formate, pyruvate, lactate, malate, fumarate, succinate, ethanol and glycerol served as electron donors for sulfate reduction. Organic substrates were incompletely oxidized to acetate. 16S rRNA gene sequence analysis showed that the closest recognized relative to strain SB1(T) was Desulfovibrio gigas DSM 1382(T) (97.5 % similarity). The G+C content of the genomic DNA of strain SB1(T) was 62.2 mol%, comparable with that of Desulfovibrio gigas DSM 1382(T) (60.2 mol%). However, the level of DNA-DNA relatedness between strain SB1(T) and Desulfovibrio gigas DSM 1382(T) was only 56.0 %, indicating that the two strains are not related at the species level. Strain SB1(T) could also be differentiated from Desulfovibrio gigas based on phenotypic characteristics, such as major cellular fatty acid composition (anteiso-C(15 : 0), iso-C(14 : 0) and C(18 : 1) cis 9) and substrate utilization. Strain SB1(T) is therefore considered to represent a novel species of the genus Desulfovibrio, for which the name Desulfovibrio paquesii sp. nov. is proposed. The type strain is SB1(T) (=DSM 16681(T)=JCM 14635(T)

    Genetic diversity of Desulfovibrio spp. in environmental samples analyzed by denaturing gradient gel electrophoresis of [NiFe] hydrogenase gene fragments

    Get PDF
    The genetic diversity of Desulfovibrio species in environmental samples was determined by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified [NiFe] hydrogenase gene fragments. Five different PCR primers were designed after Comparative analysis of [NiFe] hydrogenase gene sequences from three Desulfovibrio species. These primers were tested in different combinations on the genomic DNAs of a variety of hydrogenase-containing and hydrogenase-lacking bacteria. One primer pair was found to be specific for Desulfovibrio species only, while the others gave positive results with other bacteria also. By using this specific primer pair, we were able to amplify the [NiFe] hydrogenase genes of DNAs isolated from environmental samples and to detect the presence of Desulfovibrio species in these samples. However, only after DGGE analysis of these PCR products could the number of different Desulfovibrio species within the samples be determined. DGGE analysis Of PCR products from differ ent bioreactors demonstrated up to two bands, while at least five distinguishable bands were detected in a microbial mat sample. Because these bands most likely represent as many Desulfovibrio species present in these samples, we conclude that the genetic diversity of Desulfovibrio species in the natural microbial mat is far greater than that in the experimental bioreactors

    Seaweed loads cause stronger bacterial community shifts in coastal lagoon sediments than nutrient loads

    Get PDF
    The input of nutrients from anthropogenic sources is the leading cause of coastal eutrophication and is usually coupled with algal/seaweed blooms. Effects may be magnified in semi-enclosed systems, such as highly productive coastal lagoon ecosystems. Eutrophication and seaweed blooms can lead to ecosystem disruption. Previous studies have considered only one of these factors, disregarding possible interactive effects and the effect of the blooming species' identity on sediment bacterial communities. We tested the effect of experimental nutrient loading and two common blooming seaweeds (Ulva rigida and Gracilaria vermiculophylla) in coastal lagoon sediments, on the structure of bacterial communities (using 16S rRNA amplicon sequencing) and corresponding putative functional potential (using PiCRUSt). At the Operational Taxonomic Unit (OTU) level, the addition of nutrients reduced bacterial community α-diversity and decreased the abundance of sulfate reducers (Desulfobacterales) compared to sulfur oxidizers/denitrifiers (Chromatiales and Campylobacterales), whereas this was not the case at the order level. Seaweed addition did not change bacterial α-diversity and the effect on community structure depended on the taxonomic level considered. The addition of Gracilaria increased the abundance of orders and OTUs involved in sulfate reduction and organic matter decomposition (Desulfobacterales, Bacteroidales, and Clostridiales, respectively), an effect which was also detected when only Ulva was added. Nutrients and the seaweeds combined only interacted for Ulva and nutrients, which increased known sulfide oxidizers and denitrifiers (order Campylobacterales). Seaweed enrichment affected putative functional profiles; a stronger increase of sulfur cycling KEGG pathways was assigned to nutrient-disturbed sediments, particularly with the seaweeds and especially Ulva. In contrast, nitrogen and sulfur cycle pathways showed a higher abundance of genes related to dissimilatory nitrate reduction to ammonium (DNRA) in Ulva+nutrients treatments. However, the other seaweed treatments increased the nitrogen fixation genes. Thiosulfate reduction, performed by sulfate-reducing bacteria, increased in seaweed treatments except when Ulva was combined with nutrients. In conclusion, the in situ addition of nutrients and the seaweeds to intertidal sediments affected the bacterial communities differently and independently. The predicted functional profile suggests a shift in relative abundances of putative pathways for nitrogen and sulfur cycles, in line with the taxonomic changes of the bacterial communities.FCT - Foundation for Science and Technology UID/Multi/04326/2019 UID/Multi/04326/2016 SEAS-ERA/0001/2012 SFRH/BPD/107878/2015 SFRH/BPD/116774/2016 research priority area Systems Biology of the University of Amsterdaminfo:eu-repo/semantics/publishedVersio

    Effectiveness of various sorbents and biological oxidation in the removal of arsenic species from groundwater

    Get PDF
    The AsIII and AsV adsorption capacity of biochar, chabazite, ferritin-based material, goethite and nano zerovalent iron was evaluated in artificial systems at autoequilibrium pH (i.e. MilliQ water without adjusting the pH) and at approximately neutral pH (i.e. TRIS-HCl, pH 7.2). At autoequilibrium pH, iron-based sorbents removed 200 ug L-1 As highly efficiently whereas biochar and chabazite were ineffective. At approximately neutral pH, sorbents were capable of removing between 17 and 100% of AsIII and between 3 and 100% of AsV in the following order: biochar,chabazite,ferritin-based material,goethite,nano zero-valent iron. Chabazite, ferritin-based material and nano zero-valent iron oxidised AsIII to AsV and ferritin-based material was able to reduce AsV to AsIII. When tested in naturally As-contaminated groundwater, a marked decrease in the removal effectiveness occurred, due to possible competition with phosphate and manganese. A biological oxidation step was then introduced in a one-phase process (AsIII bio-oxidation in conjunction with AsV adsorption) and in a two-phase process (AsIII bio-oxidation followed by AsV adsorption). Arsenite oxidation was performed by resting cells of Aliihoeflea sp. strain 2WW, and arsenic adsorption by goethite. The one-phase process decreased As in groundwater to 85 %, whereas the two-phase process removed up to 95%As, leaving in solution 6 ugL-1 As, thus meeting the World Health Organization limit (10 ug L-1). These results can be used in the scaling up of a twophase treatment, with bacterial oxidation of As combined to goethite adsorption

    Metagenomic analysis shows the presence of bacteria related to free-living forms of sulfur-Oxidizing Chemolithoautotrophic Symbionts in the rhizosphere of the seagrass Zostera marina

    Get PDF
    Seagrasses play an important role as ecosystem engineers; they provide shelter to many animals and improve water quality by filtering out nutrients and by controlling pathogens. Moreover, their rhizosphere promotes a myriad of microbial interactions and processes, which are dominated by microorganisms involved in the sulfur cycle. This study provides a detailed insight into the metabolic sulfur pathways in the rhizobiome of the seagrass Zostera marina, a dominant seagrass species across the temperate northern hemisphere. Shotgun metagenomic sequencing revealed the relative dominance of Gamma- and Deltaproteobacteria, and comparative analysis of sulfur genes identified a higher abundance of genes related to sulfur oxidation than sulfate reduction. We retrieved four high-quality draft genomes that are closely related to the gill symbiont of the clam Solemya velum, which suggests the presence of putative free-living forms of symbiotic bacteria. These are potentially highly versatile chemolithoautotrophic bacteria, able to alternate their metabolism between parallel pathways of sulfide oxidation (via sqr and fcc), nitrate reduction (denitrification or DNRA) and carbon fixation (via CBB or TCA cycle), depending on the environmental availability of sulfide. Our results support the hypothesis that seagrass meadows might function as a source of symbionts for invertebrates that inhabit within or around seagrass meadows. While providing ideal conditions for the proliferation of these free-living forms of symbionts, seagrasses would benefit from their genetic versatility, which contributes to sulfide detoxification and ammonium production, the seagrasses' preferred nitrogen source.European Union ERC 322551 European Science Foundation ConGenOmics program 6349 Fundacao para a Ciencia e Tecnologia (FCT) SFRH/BPD/63/03/2009 SFRH/BPD/107878/2015info:eu-repo/semantics/publishedVersio

    Thiomicrospira kuenenii sp. nov., and Thiomicrospira frisia sp. nov., two mesophilic obligately chemolithoautotrophic sulfur-oxidizing bacteria isolated from an intertidal mud flat

    Get PDF
    Two new members of the genus Thiomicrospira were isolated from an intertidal mud flat sample with thiosulfate as the electron donor and CO2 as carbon source. On the basis of differences in genotypic and phenotypic characteristics, it is proposed that strain JB-A1(T) (= DSM 12350(T)) and strain JB-A2(T) (= DSM 12351(T)) are members of two new species, Thiomicrospira kuenenii and Thiomicrospira frisia, respectively. The cells were Gram-negative vibrios or slightly bent rods. Strain JB-A1(T) was highly motile, whereas strain JB-A2(T) showed a much lower degree of motility combined with a strong tendency to form aggregates. Both organisms were obligately autotrophic and strictly aerobic. Nitrate was not used as electron acceptor. Chemolithoautotrophic growth was observed with thiosulfate, tetrathionate, sulfur and sulfide. Neither isolate was able to grow heterotrophically. For strain JB-A1(T), growth was observed between pH values of 4.0 and 7.5 with an optimum at pH 6.0, whereas for strain JB-A2(T), growth was observed between pH 4.2 and 8.5 with an optimum at pH 6.5. The temperature limits for growth were between 3.5 and 42 degrees C and 3.5 and 39 degrees C, respectively. The optimum growth temperature for strain JB-A1(T) was between 29 and 33.5 degrees C, whereas strain JB-A2(T) showed optimal growth between 32 and 35 degrees C. The mean maximum growth rate on thiosulfate was 0.35 h(-1) for strain JB-A1(T) and 0.45 h(-1) for strain JB-A2(T)
    • …
    corecore