215 research outputs found

    Plasticizer degradation by marine bacterial isolates : a proteogenomic and metabolomic characterization

    Get PDF
    Many commercial plasticizers are toxic endocrine-disrupting chemicals that are added to plastics during manufacturing and may leach out once they reach the environment. Traditional phthalic acid ester plasticizers (PAEs), such as dibutyl phthalate (DBP) and bis(2-ethyl hexyl) phthalate (DEHP), are now increasingly being replaced with more environmentally friendly alternatives, such as acetyl tributyl citrate (ATBC). While the metabolic pathways for PAE degradation have been established in the terrestrial environment, to our knowledge, the mechanisms for ATBC biodegradation have not been identified previously and plasticizer degradation in the marine environment remains underexplored. From marine plastic debris, we enriched and isolated microbes able to grow using a range of plasticizers and, for the first time, identified the pathways used by two phylogenetically distinct bacteria to degrade three different plasticizers (i.e., DBP, DEHP, and ATBC) via a comprehensive proteogenomic and metabolomic approach. This integrated multi-OMIC study also revealed the different mechanisms used for ester side-chain removal from the different plasticizers (esterases and enzymes involved in the β-oxidation pathway) as well as the molecular response to deal with toxic intermediates, that is, phthalate, and the lower biodegrading potential detected for ATBC than for PAE plasticizers. This study highlights the metabolic potential that exists in the biofilms that colonize plastics-the Plastisphere-to effectively biodegrade plastic additives and flags the inherent importance of microbes in reducing plastic toxicity in the environment

    High-throughput proteogenomics of Ruegeria pomeroyi: seeding a better genomic annotation for the whole marine Roseobacter clade

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The structural and functional annotation of genomes is now heavily based on data obtained using automated pipeline systems. The key for an accurate structural annotation consists of blending similarities between closely related genomes with biochemical evidence of the genome interpretation. In this work we applied high-throughput proteogenomics to <it>Ruegeria pomeroyi</it>, a member of the <it>Roseobacter </it>clade, an abundant group of marine bacteria, as a seed for the annotation of the whole clade.</p> <p>Results</p> <p>A large dataset of peptides from <it>R. pomeroyi </it>was obtained after searching over 1.1 million MS/MS spectra against a six-frame translated genome database. We identified 2006 polypeptides, of which thirty-four were encoded by open reading frames (ORFs) that had not previously been annotated. From the pool of 'one-hit-wonders', <it>i.e</it>. those ORFs specified by only one peptide detected by tandem mass spectrometry, we could confirm the probable existence of five additional new genes after proving that the corresponding RNAs were transcribed. We also identified the most-N-terminal peptide of 486 polypeptides, of which sixty-four had originally been wrongly annotated.</p> <p>Conclusions</p> <p>By extending these re-annotations to the other thirty-six <it>Roseobacter </it>isolates sequenced to date (twenty different genera), we propose the correction of the assigned start codons of 1082 homologous genes in the clade. In addition, we also report the presence of novel genes within operons encoding determinants of the important tricarboxylic acid cycle, a feature that seems to be characteristic of some <it>Roseobacter </it>genomes. The detection of their corresponding products in large amounts raises the question of their function. Their discoveries point to a possible theory for protein evolution that will rely on high expression of orphans in bacteria: their putative poor efficiency could be counterbalanced by a higher level of expression. Our proteogenomic analysis will increase the reliability of the future annotation of marine bacterial genomes.</p

    Manganese oxide biomineralization is a social trait protecting

    Get PDF
    Manganese bio-mineralization is a widespread process among bacteria and fungi. To date there is no conclusive experimental evidence for, how and if this process impacts microbial fitness in the environment. Here we show how a model organism for manganese oxidation is growth-inhibited by nitrite, and that this inhibition is mitigated in presence of manganese. We show that such manganese-mediated mitigation of nitrite-inhibition is dependent on the culture inoculum size and that manganese oxide (MnOX) forms granular precipitates in the culture, rather than sheaths around individual cells. We provide evidence that MnOX protection involves both its ability to catalyze nitrite oxidation into (non-toxic) nitrate under physiological conditions, and its potential role in influencing processes involving reactive oxygen species (ROS). Taken together, these results demonstrate improved microbial fitness through MnOX deposition in an ecological setting, i.e. mitigation of nitrite toxicity, and point to a key role of MnOX in handling stresses arising from ROS

    Investigating the Impact of Cerium Oxide Nanoparticles Upon the Ecologically Significant Marine Cyanobacterium Prochlorococcus

    Get PDF
    Cerium oxide nanoparticles (nCeO_{2}) are used at an ever-increasing rate, however, their impact within the aquatic environment remains uncertain. Here, we expose the ecologically significant marine cyanobacterium Prochlorococcus sp. MED4 to nCeO_{2} at a wide range of concentrations (1 μg L^{–1} to 100 mg L^{–1}) under simulated natural and nutrient rich growth conditions. Flow cytometric analysis of cyanobacterial populations displays the potential of nCeO_{2} (100 μg L^{–1}) to significantly reduce Prochlorococcus cell density in the short-term (72 h) by up to 68.8% under environmentally relevant conditions. However, following longer exposure (240 h) cyanobacterial populations are observed to recover under simulated natural conditions. In contrast, cell-dense cultures grown under optimal conditions appear more sensitive to exposure during extended incubation, likely as a result of increased rate of encounter between cyanobacteria and nanoparticles at high cell densities. Exposure to supra-environmental nCeO_{2} concentrations (i.e., 100 mg L^{–1}) resulted in significant declines in cell density up to 95.7 and 82.7% in natural oligotrophic seawater and nutrient enriched media, respectively. Observed cell decline is associated with extensive aggregation behaviour of nCeO_{2} upon entry into natural seawater, as observed by dynamic light scattering (DLS), and hetero-aggregation with cyanobacteria, confirmed by fluorescent microscopy. Hence, the reduction of planktonic cells is believed to result from physical removal due to co-aggregation and co-sedimentation with nCeO_{2} rather than by a toxicological and cell death effect. The observed recovery of the cyanobacterial population under simulated natural conditions, and likely reduction in nCeO_{2} bioavailability as nanoparticles aggregate and undergo sedimentation in saline media, means that the likely environmental risk of nCeO_{2} in the marine environment appears low

    Genome of Alcanivorax sp. 24 : a hydrocarbon degrading bacterium isolated from marine plastic debris

    Get PDF
    Alcanivorax is an important member of the hydrocarbonoclastic group known for using alkanes and other related compound as their preferred carbon source. Here we report the genomic characteristics of Alcanivorax sp. 24 isolated from plastic marine debris. Its 4,765,873 bp genome, containing 4239 coding sequences, revealed the presence of all genomic features involved in alkane degradation (i.e. two cytochrome P450, three alkane monooxygenases AlkB and two enzymes involved in the degradation of long-chain alkanes AlmA) as well as other relevant enzymes that may play a role in the biodegradation of other polymers such as polyhydroxybutyrate. The genome features and phylogenetic context of these genes provide interesting insight into the lifestyle versatility of Alcanivorax sp. living in the plastisphere of marine plastic debris

    Environmentally relevant concentrations of titanium dioxide nanoparticles pose negligible risk to marine microbes

    Get PDF
    Nano-sized titanium dioxide (nTiO2) represents the highest produced nanomaterial by mass worldwide and, due to its prevalent industrial and commercial use, it inevitably reaches the natural environment. Previous work has revealed a negative impact of nTiO2 upon marine phytoplankton growth, however, studies are typically carried out at concentrations far exceeding those measured and predicted to occur in the environment currently. Here, a series of experiments were carried out to assess the effects of both research-grade nTiO2 and nTiO2 extracted from consumer products upon the marine dominant cyanobacterium, Prochlorococcus, and natural marine communities at environmentally relevant and supra-environmental concentrations (i.e., 1 μg L−1 to 100 mg L−1). Cell declines observed in Prochlorococcus cultures were associated with the extensive aggregation behaviour of nTiO2 in saline media and the subsequent entrapment of microbial cells. Hence, higher concentrations of nTiO2 particles exerted a stronger decline of cyanobacterial populations. However, within natural oligotrophic seawater, cultures were able to recover over time as the nanoparticles aggregated out of solution after 72 h. Subsequent shotgun proteomic analysis of Prochlorococcus cultures exposed to environmentally relevant concentrations confirmed minimal molecular features of toxicity, suggesting that direct physical effects are responsible for short-term microbial population decline. In an additional experiment, the diversity and structure of natural marine microbial communities showed negligible variations when exposed to environmentally relevant nTiO2 concentrations (i.e., 25 μg L−1). As such, the environmental risk of nTiO2 towards marine microbial species appears low, however the potential for adverse effects in hotspots of contamination exists. In future, research must be extended to consider any effect of other components of nano-enabled product formulations upon nanomaterial fate and impact within the natural environment

    Distribution of plastic polymer types in the marine environment ; a meta-analysis

    Get PDF
    Despite growing plastic discharge into the environment, researchers have struggled to detect expected increases of marine plastic debris in sea surfaces, sparking discussions about “missing plastics” and final sinks, which are hypothesized to be coastal and deep-sea sediments. While it holds true that the highest concentrations of plastic particles are found in these locations (103-104 particles m−3 in sediments vs. 0.1–1 particles m−3 in the water column), our meta-analysis also highlights that in open oceans, microplastic polymer types segregated in the water column according to their density. Lower density polymers, such as polypropylene and polyethylene, dominated sea surface samples (25% and 42%, respectively) but decreased in abundance through the water column (3% and 2% in the deep-sea, respectively), whereas only denser polymers (i.e. polyesters and acrylics) were enriched with depth (5% in surface seawater vs. 77% in deep-sea locations). Our meta-analysis demonstrates that some of the most abundant and recalcitrant manufactured plastics are more persistent in the sea surface than previously anticipated and that further research is required to determine the ultimate fate of these polymers as current knowledge does not support the deep sea as the final sink for all polymer types

    Nutrient recycling facilitates long-term stability of marine microbial phototroph–heterotroph interactions

    Get PDF
    Biological interactions underpin the functioning of marine ecosystems, be it via competition, predation, mutualism or symbiosis processes. Microbial phototroph–heterotroph interactions propel the engine that results in the biogeochemical cycling of individual elements, and they are critical for understanding and modelling global ocean processes. Unfortunately, studies thus far have focused on exponentially growing cultures in nutrient-rich media, meaning knowledge of such interactions under in situ conditions is rudimentary at best. Here, we have performed long-term phototroph–heterotroph co-culture experiments under nutrient-amended and natural seawater conditions, and show that it is not the concentration of nutrients but rather their circulation that maintains a stable interaction and a dynamic system. Using the Synechococcus–Roseobacter interaction as a model phototroph–heterotroph case study, we show that although Synechococcus is highly specialized for carrying out photosynthesis and carbon fixation, it relies on the heterotroph to remineralize the inevitably leaked organic matter, making nutrients circulate in a mutualistic system. In this sense we challenge the general belief that marine phototrophs and heterotrophs compete for the same scarce nutrients and niche space, and instead suggest that these organisms more probably benefit from each other because of their different levels of specialization and complementarity within long-term stable-state systems
    corecore