875 research outputs found

    Novel gold nanoparticles coated with somatostatin as a potential delivery system for targeting somatostatin receptors

    Get PDF
    Targeting of G-protein coupled receptors (GPCRs) like somatostatin-14 (SST-14) could have a potential interest in delivery of anti-cancer agents to tumor cells. Attachment of SST to different nano-carriers e.g., polymeric nanoparticles is limited due to the difficulty of interaction between SST itself and those nano-carriers. Furthermore, the instability problems associated with the final formulation. Attaching of SST to gold nanoparticles (AuNPs) using the positive and negative charge of SST and citrate-AuNPs could be considered a new technique to get stable non-aggregated AuNPs coated with SST. Different analyses techniques have been performed to proof the principle of coating between AuNPs and SST. Furthermore, cellular uptake study on HCC-1809 cell lines has been investigated to show the ability of AuNPs coated SST to enter the cells via SST receptors. Dynamic light scattering (DLS) indicated a successful coating of SST on the MUA-AuNPs surface. Furthermore, all the performed analysis including DLS, SDS-PAGE and UV-VIS absorption spectra indicated a successful coating of AuNPs with SST. Cellular uptake study on HCC-1806 cell lines showed that the number of AuNPs-SST per cell is signiïŹcantly higher compared to citrate-AuNPs when quantified using inductively coupled plasma spectroscopy. Moreover, the binding of AuNPs-SST to cells can be suppressed by addition of antagonist, indicating that the binding of AuNPs-SST to cells is due to receptor-specific binding. In conclusion, AuNPs could be attached to SST via adsorption to get stable AuNPs coated SST. This new formulation has a potential to target SST receptors localized in many normal and tumor cells

    A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande

    Get PDF
    Document submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresHyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of CPCP asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis has been updated from the previous Letter of Intent [K. Abe et al., arXiv:1109.3262 [hep-ex]], based on the experience gained from the ongoing T2K experiment. With a total exposure of 7.5 MW ×\times 107^7 sec integrated proton beam power (corresponding to 1.56×10221.56\times10^{22} protons on target with a 30 GeV proton beam) to a 2.52.5-degree off-axis neutrino beam produced by the J-PARC proton synchrotron, it is expected that the CPCP phase ÎŽCP\delta_{CP} can be determined to better than 19 degrees for all possible values of ÎŽCP\delta_{CP}, and CPCP violation can be established with a statistical significance of more than 3 σ3\,\sigma (5 σ5\,\sigma) for 7676% (5858%) of the ÎŽCP\delta_{CP} parameter space

    The APOA5 Trp19 allele is associated with metabolic syndrome via its association with plasma triglycerides

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The goal of the present study was to assess the effect of genetic variability at the APOA5/A4/C3/A1 cluster locus on the risk of metabolic syndrome.</p> <p>Methods</p> <p>The <it>APOA5 </it>Ser19Trp, <it>APOA5 </it>-12,238T>C, <it>APOA4 </it>Thr347Ser, <it>APOC3 </it>-482C>T and <it>APOC3 </it>3238C>G (<it>Sst</it>I) polymorphisms were analyzed in a representative population sample of 3138 men and women from France, including 932 individuals with metabolic syndrome and 2206 without metabolic syndrome, as defined by the NCEP criteria.</p> <p>Results</p> <p>Compared with homozygotes for the common allele, the odds ratio (OR) [95% CI] for metabolic syndrome was 1.30 [1.03–1.66] (<it>p </it>= 0.03) for <it>APOA5 </it>Trp19 carriers, 0.81 [0.69–0.95] (<it>p </it>= 0.01) for <it>APOA5 </it>-12,238C carriers and 0.84 [0.70–0.99] (<it>p </it>= 0.04) for <it>APOA4 </it>Ser347 carriers. Adjustment for plasma triglycerides, (but not for waist girth, HDL, blood pressure or glycemia – the other components of metabolic syndrome) abolished these associations and suggests that triglyceride levels explain the association with metabolic syndrome. There was no association between the <it>APOC3 </it>-482C>T or <it>APOC3 </it>3238C>G polymorphisms and metabolic syndrome. The decreased risk of metabolic syndrome observed in <it>APOA5 </it>-12,238C and <it>APOA4 </it>Ser347 carriers merely reflected the fact that the <it>APOA5 </it>Trp19 allele was in negative linkage disequilibrium with the common alleles of <it>APOA5 </it>-12,238T>C and <it>APOA4 </it>Thr347Ser polymorphisms.</p> <p>Conclusion</p> <p>The <it>APOA5 </it>Trp19 allele increased susceptibility to metabolic syndrome via its impact on plasma triglyceride levels.</p

    Search for the standard model Higgs boson at LEP

    Get PDF

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    X-ray emission from the Sombrero galaxy: discrete sources

    Get PDF
    We present a study of discrete X-ray sources in and around the bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival Chandra observations with a total exposure of ~200 ks. With a detection limit of L_X = 1E37 erg/s and a field of view covering a galactocentric radius of ~30 kpc (11.5 arcminute), 383 sources are detected. Cross-correlation with Spitler et al.'s catalogue of Sombrero globular clusters (GCs) identified from HST/ACS observations reveals 41 X-rays sources in GCs, presumably low-mass X-ray binaries (LMXBs). We quantify the differential luminosity functions (LFs) for both the detected GC and field LMXBs, whose power-low indices (~1.1 for the GC-LF and ~1.6 for field-LF) are consistent with previous studies for elliptical galaxies. With precise sky positions of the GCs without a detected X-ray source, we further quantify, through a fluctuation analysis, the GC LF at fainter luminosities down to 1E35 erg/s. The derived index rules out a faint-end slope flatter than 1.1 at a 2 sigma significance, contrary to recent findings in several elliptical galaxies and the bulge of M31. On the other hand, the 2-6 keV unresolved emission places a tight constraint on the field LF, implying a flattened index of ~1.0 below 1E37 erg/s. We also detect 101 sources in the halo of Sombrero. The presence of these sources cannot be interpreted as galactic LMXBs whose spatial distribution empirically follows the starlight. Their number is also higher than the expected number of cosmic AGNs (52+/-11 [1 sigma]) whose surface density is constrained by deep X-ray surveys. We suggest that either the cosmic X-ray background is unusually high in the direction of Sombrero, or a distinct population of X-ray sources is present in the halo of Sombrero.Comment: 11 figures, 5 tables, ApJ in pres

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentre−of−massframeisusedtosuppressthelargemulti−jetbackground.Thecross−sectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques
    • 

    corecore