127 research outputs found

    A secondary RET mutation in the activation loop conferring resistance to vandetanib

    Get PDF
    Resistance to vandetanib, a type I RET kinase inhibitor, developed in a patient with metastatic lung adenocarcinoma harboring a CCDC6-RET fusion that initially exhibited a response to treatment. The resistant tumor acquired a secondary mutation resulting in a serine-to-phenylalanine substitution at codon 904 in the activation loop of the RET kinase domain. The S904F mutation confers resistance to vandetanib by increasing the ATP affinity and autophosphorylation activity of RET kinase. A reduced interaction with the drug is also observed in vitro for the S904F mutant by thermal shift assay. A crystal structure of the S904F mutant reveals a small hydrophobic core around F904 likely to enhance basal kinase activity by stabilizing an active conformer. Our findings indicate that missense mutations in the activation loop of the kinase domain are able to increase kinase activity and confer drug resistance through allosteric effects

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Two TPX2-Dependent Switches Control the Activity of Aurora A

    Get PDF
    Aurora A is an important oncogenic kinase for mitotic spindle assembly and a potentially attractive target for human cancers. Its activation could be regulated by ATP cycle and its activator TPX2. To understand the activation mechanism of Aurora A, a series of 20 ns molecular dynamics (MD) simulations were performed on both the wild-type kinase and its mutants. Analyzing the three dynamic trajectories (Aurora A-ATP, Aurora A-ADP, and Aurora A-ADP-TPX2) at the residue level, for the first time we find two TPX2-dependent switches, i.e., switch-1 (Lys-143) and switch-2 (Arg-180), which are tightly associated with Aurora A activation. In the absence of TPX2, Lys-143 exhibits a “closed” state, and becomes hydrogen-bonded to ADP. Once TPX2 binding occurs, switch-1 is forced to “open” the binding site, thus pulling ADP away from Aurora A. Without facilitation of TPX2, switch-2 exits in an “open” conformation which accompanies the outward-flipping movement of P·Thr288 (in an inactive conformation), leading to the crucial phosphothreonine exposed and accessible for deactivation. However, with the binding of TPX2, switch-2 is forced to undergo a “closed” movement, thus capturing P·Thr288 into a buried position and locking its active conformation. Analysis of two Aurora A (K143A and R180A) mutants for the two switches further verifies their functionality and reliability in controlling Aurora activity. Our systems therefore suggest two switches determining Aurora A activation, which are important for the development of aurora kinase inhibitors

    Anti-Fas mAb-induced apoptosis and cytolysis of airway tissue eosinophils aggravates rather than resolves established inflammation

    Get PDF
    BACKGROUND: Fas receptor-mediated eosinophil apoptosis is currently forwarded as a mechanism resolving asthma-like inflammation. This view is based on observations in vitro and in airway lumen with unknown translatability to airway tissues in vivo. In fact, apoptotic eosinophils have not been detected in human diseased airway tissues whereas cytolytic eosinophils abound and constitute a major mode of degranulation of these cells. Also, Fas receptor stimulation may bypass the apoptotic pathway and directly evoke cytolysis of non-apoptotic cells. We thus hypothesized that effects of anti-Fas mAb in vivo may include both apoptosis and cytolysis of eosinophils and, hence, that established eosinophilic inflammation may not resolve by this treatment. METHODS: Weeklong daily allergen challenges of sensitized mice were followed by airway administration of anti-Fas mAb. BAL was performed and airway-pulmonary tissues were examined using light and electron microscopy. Lung tissue analysis for CC-chemokines, apoptosis, mucus production and plasma exudation (fibrinogen) were performed. RESULTS: Anti-Fas mAb evoked apoptosis of 28% and cytolysis of 4% of eosinophils present in allergen-challenged airway tissues. Furthermore, a majority of the apoptotic eosinophils remained unengulfed and eventually exhibited secondary necrosis. A striking histopathology far beyond the allergic inflammation developed and included degranulated eosinophils, neutrophilia, epithelial derangement, plasma exudation, mucus-plasma plugs, and inducement of 6 CC-chemokines. In animals without eosinophilia anti-Fas evoked no inflammatory response. CONCLUSION: An efficient inducer of eosinophil apoptosis in airway tissues in vivo, anti-Fas mAb evoked unprecedented asthma-like inflammation in mouse allergic airways. This outcome may partly reflect the ability of anti-Fas to evoke direct cytolysis of non-apoptotic eosinophils in airway tissues. Additionally, since most apoptotic tissue eosinophils progressed into the pro-inflammatory cellular fate of secondary necrosis this may also explain the aggravated inflammation. Our data indicate that Fas receptor mediated eosinophil apoptosis in airway tissues in vivo may cause severe disease exacerbation due to direct cytolysis and secondary necrosis of eosinophils

    Two TPX2-Dependent Switches Control the Activity of Aurora A

    Get PDF
    Aurora A is an important oncogenic kinase for mitotic spindle assembly and a potentially attractive target for human cancers. Its activation could be regulated by ATP cycle and its activator TPX2. To understand the activation mechanism of Aurora A, a series of 20 ns molecular dynamics (MD) simulations were performed on both the wild-type kinase and its mutants. Analyzing the three dynamic trajectories (Aurora A-ATP, Aurora A-ADP, and Aurora A-ADP-TPX2) at the residue level, for the first time we find two TPX2-dependent switches, i.e., switch-1 (Lys-143) and switch-2 (Arg-180), which are tightly associated with Aurora A activation. In the absence of TPX2, Lys-143 exhibits a “closed” state, and becomes hydrogen-bonded to ADP. Once TPX2 binding occurs, switch-1 is forced to “open” the binding site, thus pulling ADP away from Aurora A. Without facilitation of TPX2, switch-2 exits in an “open” conformation which accompanies the outward-flipping movement of P·Thr288 (in an inactive conformation), leading to the crucial phosphothreonine exposed and accessible for deactivation. However, with the binding of TPX2, switch-2 is forced to undergo a “closed” movement, thus capturing P·Thr288 into a buried position and locking its active conformation. Analysis of two Aurora A (K143A and R180A) mutants for the two switches further verifies their functionality and reliability in controlling Aurora activity. Our systems therefore suggest two switches determining Aurora A activation, which are important for the development of aurora kinase inhibitors

    ATP and its N6-substituted analogues: parameterization, molecular dynamics simulation and conformational analysis

    Get PDF
    In this work we used a combination of classical molecular dynamics and simulated annealing techniques to shed more light on the conformational flexibility of 12 adenosine triphosphate (ATP) analogues in a water environment. We present simulations in AMBER force field for ATP and 12 published analogues [Shah et al. (1997) Proc Natl Acad Sci USA 94: 3565–3570]. The calculations were carried out using the generalized Born (GB) solvation model in the presence of the cation Mg2+. The ion was placed at a close distance (2 Å) from the charged oxygen atoms of the beta and gamma phosphate groups of the −3 negatively charged ATP analogue molecules. Analysis of the results revealed the distribution of inter-proton distances H8–H1′ and H8–H2′ versus the torsion angle ψ (C4–N9-C1′–O4′) for all conformations of ATP analogues. There are two gaps in the distribution of torsion angle ψ values: the first is between −30 and 30 degrees and is described by cis-conformation; and the second is between 90 and 175 degrees, which mostly covers a region of anti conformation. Our results compare favorably with results obtained in experimental assays [Jiang and Mao (2002) Polyhedron 21:435–438]

    Nucleotide Binding Switches the Information Flow in Ras GTPases

    Get PDF
    The Ras superfamily comprises many guanine nucleotide-binding proteins (G proteins) that are essential to intracellular signal transduction. The guanine nucleotide-dependent intrinsic flexibility patterns of five G proteins were investigated in atomic detail through Molecular Dynamics simulations of the GDP- and GTP-bound states (SGDP and SGTP, respectively). For all the considered systems, the intrinsic flexibility of SGDP was higher than that of SGTP, suggesting that Guanine Exchange Factor (GEF) recognition and nucleotide switch require higher amplitude motions than effector recognition or GTP hydrolysis. Functional mode, dynamic domain, and interaction energy correlation analyses highlighted significant differences in the dynamics of small G proteins and Gα proteins, especially in the inactive state. Indeed, SGDP of Gαt, is characterized by a more extensive energy coupling between nucleotide binding site and distal regions involved in GEF recognition compared to small G proteins, which attenuates in the active state. Moreover, mechanically distinct domains implicated in nucleotide switch could be detected in the presence of GDP but not in the presence of GTP. Finally, in small G proteins, functional modes are more detectable in the inactive state than in the active one and involve changes in solvent exposure of two highly conserved amino acids in switches I and II involved in GEF recognition. The average solvent exposure of these amino acids correlates in turn with the rate of GDP release, suggesting for them either direct or indirect roles in the process of nucleotide switch. Collectively, nucleotide binding changes the information flow through the conserved Ras-like domain, where GDP enhances the flexibility of mechanically distinct portions involved in nucleotide switch, and favors long distance allosteric communication (in Gα proteins), compared to GTP

    The Distinct Conformational Dynamics of K-Ras and H-Ras A59G

    Get PDF
    Ras proteins regulate signaling cascades crucial for cell proliferation and differentiation by switching between GTP- and GDP-bound conformations. Distinct Ras isoforms have unique physiological functions with individual isoforms associated with different cancers and developmental diseases. Given the small structural differences among isoforms and mutants, it is currently unclear how these functional differences and aberrant properties arise. Here we investigate whether the subtle differences among isoforms and mutants are associated with detectable dynamical differences. Extensive molecular dynamics simulations reveal that wild-type K-Ras and mutant H-Ras A59G are intrinsically more dynamic than wild-type H-Ras. The crucial switch 1 and switch 2 regions along with loop 3, helix 3, and loop 7 contribute to this enhanced flexibility. Removing the gamma-phosphate of the bound GTP from the structure of A59G led to a spontaneous GTP-to-GDP conformational transition in a 20-ns unbiased simulation. The switch 1 and 2 regions exhibit enhanced flexibility and correlated motion when compared to non-transitioning wild-type H-Ras over a similar timeframe. Correlated motions between loop 3 and helix 5 of wild-type H-Ras are absent in the mutant A59G reflecting the enhanced dynamics of the loop 3 region. Taken together with earlier findings, these results suggest the existence of a lower energetic barrier between GTP and GDP states of the mutant. Molecular dynamics simulations combined with principal component analysis of available Ras crystallographic structures can be used to discriminate ligand- and sequence-based dynamic perturbations with potential functional implications. Furthermore, the identification of specific conformations associated with distinct Ras isoforms and mutants provides useful information for efforts that attempt to selectively interfere with the aberrant functions of these species

    Profiling the immune landscape in mucinous ovarian carcinoma

    Get PDF
    Objective: Mucinous ovarian carcinoma (MOC) is a rare histotype of ovarian cancer, with low response rates to standard chemotherapy, and very poor survival for patients diagnosed at advanced stage. There is a limited understanding of the MOC immune landscape, and consequently whether immune checkpoint inhibitors could be considered for a subset of patients. Methods: We performed multicolor immunohistochemistry (IHC) and immunofluorescence (IF) on tissue microarrays in a cohort of 126 MOC patients. Cell densities were calculated in the epithelial and stromal components for tumor-associated macrophages (CD68+/PD-L1+, CD68+/PD-L1-), T cells (CD3+/CD8-, CD3+/CD8+), putative T-regulatory cells (Tregs, FOXP3+), B cells (CD20+/CD79A+), plasma cells (CD20-/CD79a+), and PD-L1+ and PD-1+ cells, and compared these values with clinical factors. Univariate and multivariable Cox Proportional Hazards assessed overall survival. Unsupervised k-means clustering identified patient subsets with common patterns of immune cell infiltration. Results: Mean densities of PD1+ cells, PD-L1- macrophages, CD4+ and CD8+ T cells, and FOXP3+ Tregs were higher in the stroma compared to the epithelium. Tumors from advanced (Stage III/IV) MOC had greater epithelial infiltration of PD-L1- macrophages, and fewer PD-L1+ macrophages compared with Stage I/II cancers (p = 0.004 and p = 0.014 respectively). Patients with high epithelial density of FOXP3+ cells, CD8+/FOXP3+ cells, or PD-L1- macrophages, had poorer survival, and high epithelial CD79a + plasma cells conferred better survival, all upon univariate analysis only. Clustering showed that most MOC (86%) had an immune depleted (cold) phenotype, with only a small proportion (11/76,14%) considered immune inflamed (hot) based on T cell and PD-L1 infiltrates. Conclusion: In summary, MOCs are mostly immunogenically ‘cold’, suggesting they may have limited response to current immunotherapies

    Immunological and molecular features of the tumor microenvironment of long-term survivors of ovarian cancer

    Get PDF
    BACKGROUND. Despite an overall poor prognosis, about 15% of patients with advanced-stage tubo-ovarian high-grade serous carcinoma (HGSC) survive 10 or more years after standard treatment. METHODS. We evaluated the tumor microenvironment of this exceptional, understudied group using a large international cohort enriched for long-term survivors (LTS; 10+ years; n = 374) compared with mid-term (MTS; 5–7.99 years; n = 433) and short-term survivors (STS; 2–4.99 years; n = 416). Primary tumor samples were immunostained and scored for intraepithelial and intrastromal densities of 10 immune-cell subsets (including T cells, B cells, plasma cells, myeloid cells, PD-1+ cells, and PD-L1+ cells) and epithelial content. RESULTS. Positive associations with LTS compared with STS were seen for 9 of 10 immune-cell subsets. In particular, the combination of intraepithelial CD8+ T cells and intrastromal B cells showed near 5-fold increased odds of LTS compared with STS. All of these associations were stronger in tumors with high epithelial content and/or the C4/Differentiated molecular subtype, despite immune-cell densities generally being higher in tumors with low epithelial content and/or the C2/ Immunoreactive molecular subtype. CONCLUSION. The tumor microenvironment of HGSC LTS is distinguished by the intersection of T and B cell coinfiltration, high epithelial content, and C4/differentiated molecular subtype, features which may inspire new approaches to immunotherapy
    corecore