174 research outputs found

    Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism

    Get PDF
    PIN proteins are auxin export carriers that direct intercellular auxin flow and in turn regulate many aspects of plant growth and development including responses to environmental changes. The Arabidopsis R2R3-MYB transcription factor FOUR LIPS (FLP) and its paralogue MYB88 regulate terminal divisions during stomatal development, as well as female reproductive development and stress responses. Here we show that FLP and MYB88 act redundantly but differentially in regulating the transcription of PIN3 and PIN7 in gravity-sensing cells of primary and lateral roots. On the one hand, FLP is involved in responses to gravity stimulation in primary roots, whereas on the other, FLP and MYB88 function complementarily in establishing the gravitropic set-point angles of lateral roots. Our results support a model in which FLP and MYB88 expression specifically determines the temporal-spatial patterns of PIN3 and PIN7 transcription that are closely associated with their preferential functions during root responses to gravity

    Alpha-band rhythms in visual task performance: phase-locking by rhythmic sensory stimulation

    Get PDF
    Oscillations are an important aspect of neuronal activity. Interestingly, oscillatory patterns are also observed in behaviour, such as in visual performance measures after the presentation of a brief sensory event in the visual or another modality. These oscillations in visual performance cycle at the typical frequencies of brain rhythms, suggesting that perception may be closely linked to brain oscillations. We here investigated this link for a prominent rhythm of the visual system (the alpha-rhythm, 8-12 Hz) by applying rhythmic visual stimulation at alpha-frequency (10.6 Hz), known to lead to a resonance response in visual areas, and testing its effects on subsequent visual target discrimination. Our data show that rhythmic visual stimulation at 10.6 Hz: 1) has specific behavioral consequences, relative to stimulation at control frequencies (3.9 Hz, 7.1 Hz, 14.2 Hz), and 2) leads to alpha-band oscillations in visual performance measures, that 3) correlate in precise frequency across individuals with resting alpha-rhythms recorded over parieto-occipital areas. The most parsimonious explanation for these three findings is entrainment (phase-locking) of ongoing perceptually relevant alpha-band brain oscillations by rhythmic sensory events. These findings are in line with occipital alpha-oscillations underlying periodicity in visual performance, and suggest that rhythmic stimulation at frequencies of intrinsic brain-rhythms can be used to reveal influences of these rhythms on task performance to study their functional roles

    Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe

    Get PDF
    Shigella are human-adapted Escherichia coli that have gained the ability to invade the human gut mucosa and cause dysentery1,2, spreading efficiently via low-dose fecal-oral transmission3,4. Historically, S. sonnei has been predominantly responsible for dysentery in developed countries, but is now emerging as a problem in the developing world, apparently replacing the more diverse S. flexneri in areas undergoing economic development and improvements in water quality4-6. Classical approaches have shown S. sonnei is genetically conserved and clonal7. We report here whole-genome sequencing of 132 globally-distributed isolates. Our phylogenetic analysis shows that the current S. sonnei population descends from a common ancestor that existed less than 500 years ago and has diversified into several distinct lineages with unique characteristics. Our analysis suggests the majority of this diversification occurred in Europe, followed by more recent establishment of local pathogen populations in other continents predominantly due to the pandemic spread of a single, rapidly-evolving, multidrug resistant lineage

    Influence of packing density and stress on the dynamic response of granular materials

    Get PDF
    Laboratory geophysics tests including bender elements and acoustic emission measure the speed of propagation of stress or sound waves in granular materials to derive elastic stiffness parameters. This contribution builds on earlier studies to assess whether the received signal characteristics can provide additional information about either the material’s behaviour or the nature of the material itself. Specifically it considers the maximum frequency that the material can transmit; it also assesses whether there is a simple link between the spectrum of the received signal and the natural frequencies of the sample. Discrete element method (DEM) simulations of planar compression wave propagation were performed to generate the data for the study. Restricting consideration to uniform (monodisperse) spheres, the material fabric was varied by considering face-centred cubic lattice packings as well as random configurations with different packing densities. Supplemental analyses, in addition to the DEM simulations, were used to develop a more comprehensive understanding of the system dynamics. The assembly stiffness and mass matrices were extracted from the DEM model and these data were used in an eigenmode analysis that provided significant insight into the observed overall dynamic response. The close agreement of the wave velocities estimated using eigenmode analysis with the DEM results confirms that DEM wave propagation simulations can reliably be used to extract material stiffness data. The data show that increasing either stress or density allows higher frequencies to propagate through the media, but the low-pass wavelength is a function of packing density rather than stress level. Prior research which had hypothesised that there is a simple link between the spectrum of the received signal and the natural sample frequencies was not substantiated

    Analysis of mass spectrometry data from the secretome of an explant model of articular cartilage exposed to pro-inflammatory and anti-inflammatory stimuli using machine learning

    Get PDF
    Background: Osteoarthritis (OA) is an inflammatory disease of synovial joints involving the loss and degeneration of articular cartilage. The gold standard for evaluating cartilage loss in OA is the measurement of joint space width on standard radiographs. However, in most cases the diagnosis is made well after the onset of the disease, when the symptoms are well established. Identification of early biomarkers of OA can facilitate earlier diagnosis, improve disease monitoring and predict responses to therapeutic interventions. Methods: This study describes the bioinformatic analysis of data generated from high throughput proteomics for identification of potential biomarkers of OA. The mass spectrometry data was generated using a canine explant model of articular cartilage treated with the pro-inflammatory cytokine interleukin 1 β (IL-1β). The bioinformatics analysis involved the application of machine learning and network analysis to the proteomic mass spectrometry data. A rule based machine learning technique, BioHEL, was used to create a model that classified the samples into their relevant treatment groups by identifying those proteins that separated samples into their respective groups. The proteins identified were considered to be potential biomarkers. Protein networks were also generated; from these networks, proteins pivotal to the classification were identified. Results: BioHEL correctly classified eighteen out of twenty-three samples, giving a classification accuracy of 78.3% for the dataset. The dataset included the four classes of control, IL-1β, carprofen, and IL-1β and carprofen together. This exceeded the other machine learners that were used for a comparison, on the same dataset, with the exception of another rule-based method, JRip, which performed equally well. The proteins that were most frequently used in rules generated by BioHEL were found to include a number of relevant proteins including matrix metalloproteinase 3, interleukin 8 and matrix gla protein. Conclusions: Using this protocol, combining an in vitro model of OA with bioinformatics analysis, a number of relevant extracellular matrix proteins were identified, thereby supporting the application of these bioinformatics tools for analysis of proteomic data from in vitro models of cartilage degradation

    Coupling of kinesin ATP turnover to translocation and microtubule regulation: one engine, many machines

    Get PDF
    The cycle of ATP turnover is integral to the action of motor proteins. Here we discuss how variation in this cycle leads to variation of function observed amongst members of the kinesin superfamily of microtubule associated motor proteins. Variation in the ATP turnover cycle among superfamily members can tune the characteristic kinesin motor to one of the range of microtubule-based functions performed by kinesins. The speed at which ATP is hydrolysed affects the speed of translocation. The ratio of rate constants of ATP turnover in relation to association and dissociation from the microtubule influence the processivity of translocation. Variation in the rate-limiting step of the cycle can reverse the way in which the motor domain interacts with the microtubule producing non-motile kinesins. Because the ATP turnover cycle is not fully understood for the majority of kinesins, much work remains to show how the kinesin engine functions in such a wide variety of molecular machines

    Glucose-Insulin Therapy, Plasma Substrate Levels and Cardiac Recovery After Cardiac Ischemic Events

    Get PDF
    INTRODUCTION: The potential usefulness of glucose-insulin therapy relies to a large extent on the premise that it prevents hyperglycemia and hyperlipidemia following cardiac ischemic events. METHODS: In this review we evaluate the literature concerning plasma glucose and free fatty acids levels during and following cardiac ischemic events. RESULTS: The data indicate that hyperlipidemia and hyperglycemia most likely occur during acute coronary ischemic syndromes in the conscious state (e.g. acute myocardial infarction) and less so during reperfusion following CABG reperfusion. This is in accordance with observations that glucose-insulin therapy during early reperfusion post CABG may actually cause hypolipidemia, because substantial hyperlipidemia does not appear to occur during that stage of cardiac surgery. DISCUSSION: Considering recent data indicating that hypolipidemia may be detrimental for cardiac function, we propose that free fatty acid levels during reperfusion post CABG with the adjunct glucose-insulin therapy need to be closely monitored. CONCLUSION: From a clinical point of view, a strategy directed at monitoring and thereafter maintaining plasma substrate levels in the normal range for both glucose (4-6 mM) and FFA (0.2-0.6 mM) as well as stimulation of glucose oxidation, promises to be the most optimal metabolic reperfusion treatment following cardiac ischemic episodes. Future (preclinical and subsequently clinical) investigations are required to investigate whether the combination of glucose-insulin therapy with concomitant lipid administration may be beneficial in the setting of reperfusion post CAB

    Genomic Characterization of Haemophilus parasuis SH0165, a Highly Virulent Strain of Serovar 5 Prevalent in China

    Get PDF
    Haemophilus parasuis can be either a commensal bacterium of the porcine respiratory tract or an opportunistic pathogen causing Glässer's disease, a severe systemic disease that has led to significant economical losses in the pig industry worldwide. We determined the complete genomic sequence of H. parasuis SH0165, a highly virulent strain of serovar 5, which was isolated from a hog pen in North China. The single circular chromosome was 2,269,156 base pairs in length and contained 2,031 protein-coding genes. Together with the full spectrum of genes detected by the analysis of metabolic pathways, we confirmed that H. parasuis generates ATP via both fermentation and respiration, and possesses an intact TCA cycle for anabolism. In addition to possessing the complete pathway essential for the biosynthesis of heme, this pathogen was also found to be well-equipped with different iron acquisition systems, such as the TonB system and ABC-type transport complexes, to overcome iron limitation during infection and persistence. We identified a number of genes encoding potential virulence factors, such as type IV fimbriae and surface polysaccharides. Analysis of the genome confirmed that H. parasuis is naturally competent, as genes related to DNA uptake are present. A nine-mer DNA uptake signal sequence (ACAAGCGGT), identical to that found in Actinobacillus pleuropneumoniae and Mannheimia haemolytica, followed by similar downstream motifs, was identified in the SH0165 genome. Genomic and phylogenetic comparisons with other Pasteurellaceae species further indicated that H. parasuis was closely related to another swine pathogenic bacteria A. pleuropneumoniae. The comprehensive genetic analysis presented here provides a foundation for future research on the metabolism, natural competence and virulence of H. parasuis

    The molecular and cellular origin of human prostate cancer

    Get PDF
    Prostate cancer is the most commonly diagnosed male malignancy. Despite compelling epidemiology, there are no definitive aetiological clues linking development to frequency. Pre-malignancies such as proliferative inflammatory atrophy (PIA) and prostatic intraepithelial neoplasia (PIN) yield insights into the initiating events of prostate cancer, as they supply a background "field" for further transformation. An inflammatory aetiology, linked to recurrent prostatitis, and heterologous signalling from reactive stroma and infiltrating immune cells may result in cytokine addiction of cancer cells, including a tumour-initiating population also known as cancer stem cells (CSCs). In prostate tumours, the background mutational rate is rarely exceeded, but genetic change via profound sporadic chromosomal rearrangements results in copy number variations and aberrant gene expression. In cancer, dysfunctional differentiation is imposed upon the normal epithelial lineage, with disruption/disappearance of the basement membrane, loss of the contiguous basal cell layer and expansion of the luminal population. An initiating role for androgen receptor (AR) is attractive, due to the luminal phenotype of the tumours, but alternatively a pool of CSCs, which express little or no AR, has also been demonstrated. Indolent and aggressive tumours may also arise from different stem or progenitor cells. Castrate resistant prostate cancer (CRPC) remains the inevitable final stage of disease following treatment. Time-limited effectiveness of second-generation anti-androgens, and the appearance of an AR-neuroendocrine phenotype imply that metastatic disease is reliant upon the plasticity of the CSC population, and indeed CSC gene expression profiles are most closely related to those identified in CRPCs

    Cytoskeletal protein kinases: titin and its relations in mechanosensing

    Get PDF
    Titin, the giant elastic ruler protein of striated muscle sarcomeres, contains a catalytic kinase domain related to a family of intrasterically regulated protein kinases. The most extensively studied member of this branch of the human kinome is the Ca2+–calmodulin (CaM)-regulated myosin light-chain kinases (MLCK). However, not all kinases of the MLCK branch are functional MLCKs, and about half lack a CaM binding site in their C-terminal autoinhibitory tail (AI). A unifying feature is their association with the cytoskeleton, mostly via actin and myosin filaments. Titin kinase, similar to its invertebrate analogue twitchin kinase and likely other “MLCKs”, is not Ca2+–calmodulin-activated. Recently, local protein unfolding of the C-terminal AI has emerged as a common mechanism in the activation of CaM kinases. Single-molecule data suggested that opening of the TK active site could also be achieved by mechanical unfolding of the AI. Mechanical modulation of catalytic activity might thus allow cytoskeletal signalling proteins to act as mechanosensors, creating feedback mechanisms between cytoskeletal tension and tension generation or cellular remodelling. Similar to other MLCK-like kinases like DRAK2 and DAPK1, TK is linked to protein turnover regulation via the autophagy/lysosomal system, suggesting the MLCK-like kinases have common functions beyond contraction regulation
    corecore