161 research outputs found

    Multiplier Free Implementation of 8-tap Daubechies Wavelet Filters for Biomedical Applications

    Get PDF
    Due to an increasing demand for on-sensor biosignal processing in wireless ambulatory applications, it is crucial to reduce the power consumption and hardware cost of the signal processing units. Discrete Wavelet Transform (DWT) is very popular tool in artifact removal, detection and compression for time-frequency analysis of biosignals and can be implemented as two-branch filter bank. This work proposes a new, completely multiplier free filter architecture for implementing Daubechies wavelets which targets Field-Programmable-Gate-Array (FPGA) technologies by replacing multipliers with Reconfigurable Multiplier Blocks (ReMBs). The results have shown that the proposed technique reduces the hardware complexity by 40% in terms of Look-Up Table (LUT) count and can be used in low-cost embedded platforms for ambulatory physiological signal monitoring and analysis

    Area and Power Efficient Implementation of db4 Wavelet Filter Banks for ECG Applications Using Reconfigurable Multiplier Blocks

    Get PDF
    There is an increasing demand for wavelet-based real-time on-node signal processing in portable medical devices which raises the need for reduced hardware size, cost and power consumption. This paper presents an improved Reconfigurable Multiplier Block (ReMB) architecture for an 8-tap Daubechies wavelet filter employed in a tree structured filter bank which targets the recent Field-Programmable-Gate-Array (FPGA) technologies. The ReMB is used to replace the expensive and power hungry multiplier blocks as well as the coefficient memories required in time-multiplexed finite impulse response filter architectures. The proposed architecture is implemented on a Kintex-7 FPGA and the resource utilization, maximum operating frequency and the estimated dynamic power consumption figures are reported and compared with the literature. The results demonstrated that the proposed architecture reduces the hard- ware utilization by 30% and improves the power consumption by 44% in comparison to architectures with general purpose multipliers. Thus, the proposed implementation can be deployed in low-cost low-power embedded platforms for portable medical devices

    IIR Wavelet Filter Banks for ECG Signal Denoising

    Get PDF
    ElectroCardioGram (ECG) signals are widely used for diagnostic purposes. However, it is well known that these recordings are usually corrupted with different type of noise/artifacts which might lead to misdiagnosis of the patient. This paper presents the design and novel use of Infinite Impulse Response (IIR) filter based Discrete Wavelet Transform (DWT) for ECG denoising that can be employed in ambulatory health monitoring applications. The proposed system is evaluated and compared in terms of denoising performance as well as the computational complexity with the conventional Finite Impulse Response (FIR) based DWT systems. For this purpose, raw ECG data from MIT-BIH arrhythmia database are contaminated with synthetic noise and denoised with the aforementioned filter banks. The results from 100 Monte Carlo simulations demonstrated that the proposed filter banks provide better denoising performance with fewer arithmetic operations than those reported in the open literature

    Design and Implementation of Complexity Reduced Digital Signal Processors for Low Power Biomedical Applications

    Get PDF
    Wearable health monitoring systems can provide remote care with supervised, inde-pendent living which are capable of signal sensing, acquisition, local processing and transmission. A generic biopotential signal (such as Electrocardiogram (ECG), and Electroencephalogram (EEG)) processing platform consists of four main functional components. The signals acquired by the electrodes are ampliļ¬ed and preconditioned by the (1) Analog-Front-End (AFE) which are then digitized via the (2) Analog-to-Digital Converter (ADC) for further processing. The local digital signal processing is usually handled by a custom designed (3) Digital Signal Processor (DSP) which is responsible for either anyone or combination of signal processing algorithms such as noise detection, noise/artefact removal, feature extraction, classiļ¬cation and compres-sion. The digitally processed data is then transmitted via the (4) transmitter which is renown as the most power hungry block in the complete platform. All the afore-mentioned components of the wearable systems are required to be designed and ļ¬tted into an integrated system where the area and the power requirements are stringent. Therefore, hardware complexity and power dissipation of each functional component are crucial aspects while designing and implementing a wearable monitoring platform. The work undertaken focuses on reducing the hardware complexity of a biosignal DSP and presents low hardware complexity solutions that can be employed in the aforemen-tioned wearable platforms. A typical state-of-the-art system utilizes Sigma Delta (Ī£āˆ†) ADCs incorporating a Ī£āˆ† modulator and a decimation ļ¬lter whereas the state-of-the-art decimation ļ¬lters employ linear phase Finite-Impulse-Response (FIR) ļ¬lters with high orders that in-crease the hardware complexity [1ā€“5]. In this thesis, the novel use of minimum phase Inļ¬nite-Impulse-Response (IIR) decimators is proposed where the hardware complexity is massively reduced compared to the conventional FIR decimators. In addition, the non-linear phase eļ¬€ects of these ļ¬lters are also investigated since phase non-linearity may distort the time domain representation of the signal being ļ¬ltered which is un-desirable eļ¬€ect for biopotential signals especially when the ļ¬ducial characteristics carry diagnostic importance. In the case of ECG monitoring systems the eļ¬€ect of the IIR ļ¬lter phase non-linearity is minimal which does not aļ¬€ect the diagnostic accuracy of the signals. The work undertaken also proposes two methods for reducing the hardware complexity of the popular biosignal processing tool, Discrete Wavelet Transform (DWT). General purpose multipliers are known to be hardware and power hungry in terms of the number of addition operations or their underlying building blocks like full adders or half adders required. Higher number of adders leads to an increase in the power consumption which is directly proportional to the clock frequency, supply voltage, switching activity and the resources utilized. A typical Field-Programmable-Gate-Arrayā€™s (FPGA) resources are Look-up Tables (LUTs) whereas a custom Digital Signal Processorā€™s (DSP) are gate-level cells of standard cell libraries that are used to build adders [6]. One of the proposed methods is the replacement of the hardware and power hungry general pur-pose multipliers and the coeļ¬ƒcient memories with reconļ¬gurable multiplier blocks that are composed of simple shift-add networks and multiplexers. This method substantially reduces the resource utilization as well as the power consumption of the system. The second proposed method is the design and implementation of the DWT ļ¬lter banks using IIR ļ¬lters which employ less number of arithmetic operations compared to the state-of-the-art FIR wavelets. This reduces the hardware complexity of the analysis ļ¬lter bank of the DWT and can be employed in applications where the reconstruction is not required. However, the synthesis ļ¬lter bank for the IIR wavelet transform has a higher computational complexity compared to the conventional FIR wavelet synthesis ļ¬lter banks since re-indexing of the ļ¬ltered data sequence is required that can only be achieved via the use of extra registers. Therefore, this led to the proposal of a novel design which replaces the complex IIR based synthesis ļ¬lter banks with FIR ļ¬l-ters which are the approximations of the associated IIR ļ¬lters. Finally, a comparative study is presented where the hybrid IIR/FIR and FIR/FIR wavelet ļ¬lter banks are de-ployed in a typical noise reduction scenario using the wavelet thresholding techniques. It is concluded that the proposed hybrid IIR/FIR wavelet ļ¬lter banks provide better denoising performance, reduced computational complexity and power consumption in comparison to their IIR/IIR and FIR/FIR counterparts

    Hybrid IIR/FIR Wavelet Filter Banks for ECG Signal Denoising

    Get PDF
    ElectroCardioGram (ECG) signals are usually corrupted with various types of artifacts which degrade the signal quality and might lead to misdiagnosis. The wavelet denoising technique is widely studied in the artifact removal literature which employs conventional Finite Impulse Response (FIR) wavelet filter banks for decomposing, thresholding and reconstructing the noisy signal to obtain high fidelity and clean ECG signal. However, the use of high order FIR wavelet filters increases the hardware complexity and cost of the system. This paper presents novel hybrid Infinite Impulse Response (IIR)/FIR Discrete Wavelet Transform (DWT) filter banks that can be employed in ambulatory health monitoring applications for denoising purposes. The proposed systems are evaluated and compared to the conventional FIR based DWT systems in terms of the computational complexity as well as the denoising performance. The results from 100 Monte Carlo simulations demonstrated that the proposed filter banks provide better denoising performance with fewer arithmetic operations than those reported in the open literature

    Low Complexity All-Pass Based Polyphase Decimation Filters for ECG Monitoring

    Get PDF
    This paper presents a low complexity high efficiency decimation filter which can be employed in EletroCardioGram (ECG) acquisition systems. The decimation filter with a decimation ratio of 128 works along with a third order sigma delta modulator. It is designed in four stages to reduce cost and power consumption. The work reported here provides an efficient approach for the decimation process for high resolution biomedical data conversion applications by employing low complexity two-path all-pass based decimation filters. The performance of the proposed decimation chain was validated by using the MIT-BIH arrhythmia database and comparative simulations were conducted with the state of the art

    Clinical presentation, diagnostic findings and outcome of dogs with presumptive spinal-only meningoencephalomyelitis of unknown origin

    Get PDF
    Objectives: To summarise clinical presentation, diagnostic findings and long-term outcome for dogs clinically diagnosed with meningoencephalomyelitis of unknown origin affecting the spinal cord alone. Methods: Medical records were reviewed for dogs diagnosed with presumptive spinal-only meningoencephalomyelitis of unknown origin between 2006 and 2015. Results: 21 dogs were included; the majority presented with an acute (43%) or chronic (52%) onset of neurological signs. Ambulatory paresis was the most common neurological presentation (67%). Neurological examination most commonly revealed a T3-L3 myelopathy, and spinal hyperaesthesia was a common finding (71%). A spinal cord lesion was visible in 90% of cases on magnetic resonance imaging. Eighteen lesions (86%) showed parenchymal contrast enhancement and 17 lesions (81%) showed contrast enhancement of overlying meninges. All dogs were treated with immunosuppressive doses of glucocorticosteroids, sometimes combined with cytosine arabinoside. At time of data capture, 10/21 dogs (48%) had died or been euthanased because of the condition. Overall median survival time was 669 days. Clinical Significance: Meningoencephalomyelitis of unknown origin should be considered in the differential diagnosis of dogs presenting with a progressive myelopathy. Magnetic resonance imaging features can possibly help to distinguish presumptive meningoencephalomyelitis of unknown origin from other more common spinal diseases. Overall, long-term survival is guarded, approximately 50% of dogs will die or be euthanased despite appropriate therapy

    Nasca classification of hemivertebra in five dogs

    Get PDF
    <p/> <p>Five dogs, four small mixed breed and a Doberman Pinscher, presented in our clinic with hemivertebra. Complete physical, radiological and neurological examinations were done and the spinal deformities were characterized in accord with the Nasca classification used in human medicine. Two dogs had multiple hemivertebrae (round, oval or wedge-shaped: Type 3) in the thoracic region; one dog had an individual surplus half vertebral body (Type 1) plus a wedge-shaped hemivertebra (Type 2b) in the lumbar region; one dog had multiple hemivertebrae which were fused on one side (Type 4a) in the thoracic region; and one dog had a wedge-shaped hemivertebra (Type 2a) in the cervical region.</p

    Two-Path All-pass Based Half-Band Infinite Impulse Response Decimation Filters and the Effects of Their Non-Linear Phase Response on ECG Signal Acquisition

    Get PDF
    This paper is based on the novel use of a very high fidelity decimation filter chain for Electrocardiogram (ECG) signal acquisition and data conversion. The multiplier-free and multi-stage structure of the proposed filters lower the power dissipation while minimizing the circuit area which are crucial design constraints to the wireless noninvasive wearable health monitoring products due to the scarce operational resources in their electronic implementation. The decimation ratio of the presented filter is 128, working in tandem with a 1-bit 3rd order Sigma Delta (Ī£Ī”) modulator which achieves 0.04 dB passband ripples and -74 dB stopband attenuation. The work reported here investigates the non-linear phase effects of the proposed decimation filters on the ECG signal by carrying out a comparative study after phase correction. It concludes that the enhanced phase linearity is not crucial for ECG acquisition and data conversion applications since the signal distortion of the acquired signal, due to phase non-linearity, is insignificant for both original and phase compensated filters. To the best of the authorsā€™ knowledge, being free of signal distortion is essential as this might lead to misdiagnosis as stated in the state of the art. This article demonstrates that with their minimal power consumption and minimal signal distortion features, the proposed decimation filters can effectively be employed in biosignal data processing units
    • ā€¦
    corecore