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Transcriptional regulation of PIN genes by FOUR
LIPS and MYB88 during Arabidopsis root
gravitropism
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Masao Tasaka5, Jiřı́ Friml6, Erich Grotewold3, Tom Beeckman7,8, Steffen Vanneste7,8, Fred Sack9,z & Jie Le1

PIN proteins are auxin export carriers that direct intercellular auxin flow and in turn regulate

many aspects of plant growth and development including responses to environmental

changes. The Arabidopsis R2R3-MYB transcription factor FOUR LIPS (FLP) and its paralogue

MYB88 regulate terminal divisions during stomatal development, as well as female

reproductive development and stress responses. Here we show that FLP and MYB88

act redundantly but differentially in regulating the transcription of PIN3 and PIN7 in

gravity-sensing cells of primary and lateral roots. On the one hand, FLP is involved in

responses to gravity stimulation in primary roots, whereas on the other, FLP and MYB88

function complementarily in establishing the gravitropic set-point angles of lateral roots.

Our results support a model in which FLP and MYB88 expression specifically determines the

temporal-spatial patterns of PIN3 and PIN7 transcription that are closely associated with their

preferential functions during root responses to gravity.
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F
OUR LIPS (FLP; MYB124) and MYB88 are MYB transcrip-
tion factors that act redundantly in limiting terminal
divisions in stomatal lineage. The flp-1 mutant (a weak

allele) typically harbours four guard cells in direct contact.
Although myb88 mutants exhibit normal stomata, flp-1 myb88
double mutants display more severe stomatal defects than flp
single mutants1,2. FLP and MYB88 downregulate the expression
of a set of core cell cycle genes, for example, CYCLIN-
DEPENDENT KINASE (CDK) B1;1, CYCLINA2;3 and CDKA;1,
and do so by directly binding cis-regulatory elements in these
gene promoters3–5. Interestingly, FLP and MYB88 also function
in abiotic stress responses and during female reproductive
development6,7.

Auxin broadly regulates plant development via its dynamic and
differential distribution in plant tissues8. Auxin is also a primary
signal controlling growth responses to gravity that are essential
for plant architecture. Phases of gravitropic growth include
sensing, signal transduction and asymmetric organ growth.
According to the Starch–Statolith hypothesis, the sedimentation
of amyloplasts in gravity-sensing cells such as root columella cells
triggers biochemical signals, for example, auxin9,10. Following
gravity stimulation (reorientation) of primary roots, the
subcellular localization of the auxin transporters PIN-FORMED
(PIN) proteins11,12, such as PIN3 and PIN7, become repolarized,
leading to redirected auxin flux to the lower side of the root,
differential cell elongation and root tip bending8,13–15.
High-resolution kinetics of auxin redistribution following
gravity stimuli has been analysed using a sensitive auxin sensor,
DII-VENUS16,17. Using microrheological analysis, we recently
found that the ratio of DII-VENUS signals between the upper and
lower cells located next to the columella cells displays a linear
relationship with the apparent viscosities of central columella
cells, results that further support the importance of amyloplast
sedimentation triggering the asymmetric redistribution of auxin
across root tips18.

The orientation of plant growth with respect to the gravity
vector can be defined by the gravitropic set-point angle (GSA)19.
Primary roots of Arabidopsis typically grow parallel to the gravity
vector (0� GSA). Lateral roots initiate in the pericycle from
primary roots, a developmental process involving eight stages,
from initiation to emergence20. After emergence, the later
development of lateral roots can be classified into six stages21.
Lateral roots emerge from primary roots at an initial GSA of 90�.
As lateral roots elongate, they start to bend downward and
display reduced GSAs during Stage II. Stage III roots continue to
grow straight along this GSA, but then bend further downwards
during the III–IV stage transition, leading to a further reduced
GSA at Stage IV (ref. 22).

Here we show that the Arabidopsis R2R3-MYB transcription
factor FLP and its paralogue MYB88 directly regulate transcrip-
tion levels of the PIN3 and PIN7 genes, a regulation that in turn
mediates auxin transport that contributes to the gravitropic
responses of primary and lateral roots. Our results also support a
model in which FLP and MYB88 specifically determines the
temporal-spatial patterns of PIN3 and PIN7 transcription that are
closely associated with their preferential functions during root
responses to gravity.

Results
Mutation of FLP induces gravitropic defects in primary roots.
Our expression analysis of transgenic plants harbouring either
FLP::GUS-GFP1 or MYB88::GUS-GFP4 revealed that FLP is most
strongly expressed in columella cells of the root cap (Fig. 1a,b). By
contrast, MYB88 expression was absent from the columella
(Fig. 1c,d). As the columella is the site of root gravity sensing, we

explored whether FLP and MYB88 might also function in root
gravitropism. The curvature of primary roots in flp-1, myb88 and
their double mutants was assessed following gravity stimulation
(reorientation of 90�). Compared with wild-type primary roots,
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Figure 1 | FLP is required for auxin asymmetry during primary root

gravitropism. Fluorescence of FLP::GUS-GFP in a 4-day-old primary root

(a); enlarged image of the region (within the white box) in a shows the

expression of FLP in columella cells (b). MYB88::GUS-GFP expression is

absent from a 4-day-old primary root tip (c) and from columella cells

(d) shown in an enlarged image of the region within the white box in c.

Seedling images of 4-day-old Col (e), flp-1 (f), myb88 (g) and flp-1 myb88

double mutant (h) at 12 h after a 90� reorientation. Arrows in e indicate the

gravity vector before (dashed line) and after reorientation. (i) Time course

of root curvature after gravity stimulation. flp-1 and flp-1 myb88 double

mutants display defective responses to gravity stimulation. (j) Test of the

rescue of gravitropic defects of in flp-1 primary roots. Angles of curvature

were measured at 6 h after a 90� reorientation. Transformation with

FLP::FLP-GFP or FLP::MYB88 complements the gravitropic defects of flp-1

primary roots. By contrast, MYB88::MYB88 fails to complement the flp-1

phenotypes. Asterisks in i and j indicate significant differences between

wild type and mutants (Student’s two-tailed t-test; **Po0.01; three

individual experiments; n, the number of roots scored for each genotype

or transgenic line). Bars represent mean values with s.d. Scale bars,

50mm (a–d) and 2 mm (e–h).
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flp-1 exhibited a defective gravity response, as shown by a slower
realignment of roots after gravity stimulation. By contrast, the
gravitropic response was normal in a myb88 mutant. Unlike the
functional redundancy between FLP and MYB88 in stomatal
development, the loss-of-function of both genes in the flp-1
myb88 double mutant failed to disrupt gravitropism more
severely than in flp-1 alone (Fig. 1e–i).

Moreover, the introduction of a FLP::FLP-GFP construct,
which rescues the flp-1 stomatal phenotype23, complemented
flp-1 root gravitropic defects. Interestingly, MYB88 driven by the
FLP promoter (FLP::MYB88) can rescue the primary root
gravitropic defects of flp-1, suggesting that FLP and MYB88 can
regulate the same downstream targets. However, MYB88::MYB88
failed to complement the flp-1 primary root gravitropic defects,
consistent with the absence of MYB88 from the columella,
indicating predominant role of FLP in primary root gravitropism
(Fig. 1j).

Delayed auxin asymmetric redistribution in flp primary roots.
Similarly, the growth of primary roots after reorientation was
comparable in the wild type, flp-1, myb88 and in flp-1 myb88
double mutants (Supplementary Fig. 1a). The loss of FLP function
had no obvious effects on the formation, size and distribution of
statoliths (amyloplasts) in columella cells, as shown by the
staining of starch with the Lugol reagent (Supplementary
Fig. 1b,c). Moreover, after gravity stimulation, the extent of
amyloplast sedimentation in flp-1 columella cells was indis-
tinguishable from that of the wild type (Supplementary Fig. 1d–i).
These results suggest that the defective gravitropic response in
flp-1 roots may have arisen from altered signal transduction and/
or asymmetric organ growth. To address these possibilities, we
monitored the redistribution of auxin using the sensitive auxin
negative sensor 35S::DII-VENUS-N7, as a proxy for quantifying
rapid changes in auxin signalling and distribution16.

After reorientation, auxin rapidly redistributed to the lower
side of the root that leads to a dose-dependent degradation of
DII-VENUS within minutes17. We previously demonstrated that
the fluorescence ratio of DII-VENUS between lateral root cap
(LRC) cells, which are located immediately adjacent to the
columella at the upper and lower sides of the root, showed a
linear relationship with statolith mechanical stimulation
(Fig. 2a)18. Ten minutes after reorientation, the DII-VENUS
signal in the LRCs at the lower side started to attenuate,
indicating the establishment of an auxin asymmetry. This
asymmetry continued to increase 20–30 min after reorientation
(Fig. 2b–f). A time-dependent increase of the DII-VENUS ratio
was also found in flp-1 primary roots, but this ratio was lower
than in the wild type at the same timepoint (Fig. 2b,g–j). We also
monitored the auxin asymmetry by measuring the intensity of
fluorescence from the synthetic auxin-responsive reporter
DR5rev::3xVENUS-N7 (ref. 24). When wild-type roots were
turned horizontal, DR5 fluorescence in the cells along the lower
side became stronger than the upper side. For example, 4 h after
reorientation the mean ratio of DR5 fluorescence intensity in the
two sides reached 23:1 (Fig. 2k). However, in flp-1 roots this ratio
was reduced to 7:1 (Fig. 2l), indicating a defect in generating the
auxin asymmetry required for gravitropic bending.

In addition, overall levels of DII-VENUS in flp-1 gravity-
sensing cells were higher than in the wild type. Pretreatment with
a low concentration of auxin (1 nM indole-3-acetic acid (IAA),
2 h)17 induced a reduction of DII-VENUS signals overall;
however, the DII-VENUS asymmetry in flp-1 roots was still
lower than that in wild-type roots at the same timepoints
(Fig. 2m–s). These data indicate that the defective gravitropic
response of flp-1 primary roots probably arises from a delayed
and reduced asymmetry in the auxin gradient.

PIN3 and PIN7 transcripts are reduced in flp primary roots.
The dynamic redistribution of auxin during gravitropic bending
results from the joint activity of different auxin transporters, such
as PIN2, PIN3 and PIN7 from the PIN family11–14. Real-time
quantitative PCR (qPCR) revealed that the levels of PIN3 and
PIN7 transcription were significantly lower in flp-1, whereas PIN2
levels appeared normal (Fig. 3a). PIN2::PIN2-GFP25 expression
was consistently found to be normal in primary root tips in flp-1
(Fig. 3b,c). By contrast, the expression of PIN3::PIN3-GFP14 and
PIN7::PIN7-GFP26 was greatly reduced in flp-1 columella cells
(Fig. 3d–g). Whole-mount RNA in-situ hybridization also showed
that the PIN3 messenger RNA signal was barely detectable in flp-1
columella cells (Fig. 3h–k), consistent with reduced PIN3
transcript levels in flp-1 mutants.

After gravity stimulation, non-polarly localized PIN3 proteins
redistribute to the lower side of columella cells14. However, the
overall level of PIN3-GFP expression was not altered by gravity
stimulation either in the wild type, flp-1, myb88 or in the flp-1
myb88 double mutants (Supplementary Fig. 2). PIN3 expression
can be rapidly induced by exogenous auxin treatment27. We thus
measured the intensity of fluorescence from the synthetic auxin-
responsive reporter DR5rev::3xVENUS-N7 (ref. 24) in the central
collumela cells of wild type and mutants. DR5 levels were much
lower in gravity-sensing cells in flp-1 or flp-1 myb88 than in the
wild type or in myb88 (Supplementary Fig. 3a–d). When seedlings
were grown on the surface of auxin-supplemented medium
(0.5 mM 1-naphtaleneacetic acid (NAA), 4 days), enhanced DR5
fluorescence levels was observed in the wild-type and in flp-1
root tips, suggesting that auxin signalling transduction in the
mutants was comparable to that of the wild type (Supplementary
Fig. 3e–g). By contrast, the auxin-induced enhancement of
PIN3-GFP expression in flp-1 columella cells was much lower
compared with the wild type, consistent with FLP being required
to regulate PIN3 transcription (Fig. 3l–t).

To test whether the gravitropic defects were caused by reduced
levels of PIN3 or PIN7 transcripts, PIN3-YFP and PIN7-GFP
driven by the FLP promoter were transformed into flp-1 mutants.
For example, PIN3-YFP fluorescence was found in gravity sensing
cells in flp-1 harbouring FLP::PIN3-YFP (Fig. 3u). Either
FLP::PIN3-YFP or FLP::PIN7-YFP fully rescued the gravitropic
response of flp-1 primary roots (Fig. 3v). These data are
consistent with the possibility that the reduced auxin asymmetry
across flp-1 primary roots after gravity stimulation is caused
primarily by low transcript levels of PIN3 and PIN7. By contrast,
transformation with a MYB88::PIN7-GFP construct failed to
complement the flp-1 gravitropic phenotype (Fig. 3v), further
indicating that specific spatial expression in gravity-sensing cells
is essential for PIN functions.

FLP and MYB88 directly regulate PIN3 and PIN7 transcription.
FLP and MYB88 are atypical MYB transcription factors that can
bind directly to the promoters of downstream genes that harbour
an [A/T/G][A/T/G]C[C/G][C/G] motif3. Using yeast one-hybrid
assays, we identified two regions in PIN3 promoter fragment C
(� 980 to � 742 bp, upstream of the translational start site) and E
(� 572 to � 349 bp) that can bind to FLP or MYB88
(Supplementary Fig. 4a). Chromatin immunoprecipitation
(ChIP)–qPCR was performed using antibodies to green
fluorescent protein (GFP) in FLP::FLP-GFP transgenic
seedlings23. Only PCR products ‘b’ that contained the element (–
902)AGCCG, which localized 902 bp upstream of the translational
start site, were found to be enriched in transgenic seedlings
(Fig. 4a,b). Tagged His-FLP or His-MYB88 fusion proteins were
used to identify the putative binding sequences within the
fragment C and E of PIN3 promoter in electrophoretic mobility
shift assays (EMSAs). Only probes with the core consensus
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sequence (–902)AGCCG bound His-FLP or His-MYB88 proteins
(Fig. 4c). By contrast, Probe-863 and Probe-473, which harbour (–
863)TACCC and (–473)GTCCG sequences, failed to bind to the
FLP protein (Supplementary Fig. 4b). Together, these data
demonstrate that FLP and MYB88 can bind directly to the PIN3
promoter via the (–902)AGCCG element, a finding consistent with
the FLP-binding site in the PIN3 promoter that was characterized
by Chen et al.28.

Similar assays were performed to test whether FLP and MYB88
can bind to the PIN7 promoter. Yeast one-hybrid assays,
EMSA assays and ChIP–qPCR data indicate that elements
(–1392)AACCG and (–1386)CGCGG within fragment A are
putative FLP- and MYB88-binding sites (Fig. 4d,e and
Supplementary Fig. 5). As two elements are closely positioned,
mutated probes were generated for EMSA analysis in which all
nucleotides within another putative element were replaced with
adenines. The mutated probes, Probe-1392 and Probe-1386,
independently bound to the FLP or the MYB88 proteins (Fig. 4f),
confirming that FLP and MYB88 can bind to the PIN7 promoter,
in addition to that of PIN3, and does so via two closely located
binding elements (–1392)AACCG and (–1386)CGCGG.

PIN expression coordinates with FLP/MYB88 in lateral roots.
Although PIN3 and PIN7 are redundantly involved in primary root
gravitropism, it is possible that the function of these PINs in setting

lateral root GSAs might be compensatory22,29. To further define
the roles of FLP and MYB88 in regulating PIN transcripts, their
dynamic relationships during the formation of lateral root GSA I
and GSA II were investigated. We first examined the spatial
expression pattern of FLP and MYB88 during lateral root
development after emergence. FLP::GUS was found to be widely
expressed in freshly emerged lateral roots (Stage I). In elongating
lateral roots (Stage II), GUS expression was reduced but remained
high in columella cells, and this expression started to decline during
differentiation (Stage III). Only weak FLP::GUS expression was
present in columella cells in more mature lateral roots (Stage IV)
(Fig. 5a). By contrast, MYB88::GUS staining was detected in lateral
root tips after Stage II and subsequently enlarged and became more
intense in columella cells (Fig. 5b), raising the possibility that
MYB88 functions during lateral root gravitropic responses in late
stages, with FLP functioning preferentially in earlier stages.

FLP and MYB88 determine the lateral root GSA via PINs.
Similarly, as was previously reported22, PIN3::PIN3-GFP
expression was present at the tip of wild-type lateral roots
during their emergence from primary roots (Stage I). During
Stage II, PIN3::PIN3-GFP became strongly expressed in columella
cells. However, this signal started to decline in Stage III and was
barely detectable by Stage IV. PIN3::PIN3-GFP expression was
low throughout flp-1 lateral root development, but this expression
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was normal in myb88 lateral roots (Fig. 5c). Thus, even though
FLP and MYB both bind to the PIN3 promoter, it is likely to be
that the regulation of PIN3 transcript levels in lateral root
columella cells depends primarily on FLP but not MYB88. By
contrast, the expression of PIN7::PIN7-GFP in columella cells in
wild-type lateral roots began late in Stage II and then this
expression domain enlarged into more columella cell layers
during Stages III and IV, an expression pattern partially
overlapped but complementary to that of PIN3::PIN3-GFP. By
contrast, PIN7::PIN7-GFP expression was barely detectable in
flp-1 and myb88 lateral roots (Fig. 5d).

To assess the roles of FLP and MYB88 in regulating the
expression of PIN3 and PIN7 in emerged lateral roots, we
compared lateral root GSA I and GSA II in several mutants
(Fig. 6a,b). During the early stages after lateral root emergence,
flp-1, similar to a pin3-4 knockout mutant, grew downwards
faster than the wild type and exhibited a smaller GSA I
(Fig. 6c–e). For example, over 30% of flp-1 lateral roots fell
within a 30–50� range (Fig. 6j). The GSA I in the flp-1 my88

double mutant resembles the reduced GSA I in the flp-1 single
mutant, whereas the myb88 mutant exhibit a GSA I similar to that
of wild-type lateral roots (Supplementary Fig. 6a). Statistical
analysis using Kolmogorov–Smirnov (KS) test22 also revealed a
significant reduction of GSA I in flp-1, flp-1 myb88, as well as in
pin3-4 (Supplementary Fig. 7a–d). The reduced GSA I in flp-1
mutants is rescued by transforming with FLP::FLP-GFP23,
FLP::MYB88, FLP::PIN3-YFP or FLP::PIN7-GFP (Table 1 and
Supplementary Fig. 7f–i). However, either MYB88::MYB88 or
MYB88::PIN7-GFP failed to reset the flp-1 GSA I to normal
(Supplementary Fig. 7j,k).

After plateau growth during Stage III, lateral roots start to bend
further downward. flp-1, flp-1 myb88 and pin3-4 retain their small
GSA IIs (Fig. 6k and Supplementary Fig. 6b, 8c–e). In contrast to
the normal GSA I in myb88, 470% of myb88 lateral roots at
Stage IV harboured a GSA II lower than 30�, indicating that these
roots bend downwards faster than the wild type after Stage III
(Fig. 6f,g,j,k). Notably, similar to myb88, pin7-1 lateral roots
exhibited a normal GSA I, but a smaller GSA II, such as more
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and PIN7::PIN7-GFP was reduced in flp-1 columella cells (e,g) compared with that in respective Col background (d,f). (h–k) Whole-mount in-situ

hybridization of PIN3 mRNA. PIN3 mRNA was detected in wild-type columella, predominantly in the C1 and C2 layers (h). PIN3 mRNA was barely detected

in flp-1 (j). Negative PIN3 sense controls for wild-type (i) and flp-1 (k). (l) Relative fluorescence intensities of PIN3-GFP in gravity-sensing cells after NAA

treatment (0.5mM NAA, 4-day-old). Col display a significant enhancement of PIN3-GFP signals. However, overall PIN3-GFP level in flp-1 roots is not

upregulated by auxin. Asterisks indicate significant differences (Student’s two-tailed t-test; **Po0.01 compared with respective mock controls; three

individual experiments; n, number of roots scored for each genotype). (m–t) PIN3-GFP expression in Col is upregulated by auxin (m,n). No obvious

enhancement of PIN3-GFP expression in flp-1 (q,r). Heat map images (o,p,s,t). (u) Expression of FLP::PIN3-YFP in a flp-1 root tip. (v) Expression of PIN3-YFP

and PIN7-GFP driven by the FLP promoter fully rescues gravitropic defects in flp-1 primary roots. By contrast, PIN7-GFP under the control of the MYB88

promoter is unable to rescue flp-1 phenotypes. Asterisks indicate significant difference (Student’s two-tailed t-test; **Po0.01 compared with Col; three

individual experiments; n, number of roots scored for each genotype). Bars in a,l,v represent mean values with s.d. Red fluorescence in b–g,m,n,q,r,u derives

from propidium iodide staining that shows cell outlines. Scale bars, 50mm.
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roots displaying GSA II within 0–30� (Fig. 6h–k and
Supplementary Fig. 6b). The above observations were confirmed
by KS tests (Supplementary Fig. 7c,e and 8a,b). These results
indicate that MYB88 functions in controlling lateral root bending
via PIN7. Furthermore, MYB88::MYB88 and MYB88::PIN7-GFP,
which failed to rescue the flp-1 GSA I phenotype, can restore the
GSA II in myb88 lateral roots (Supplementary Fig. 8f,g). These
results further demonstrate that MYB88 functions in setting the
lateral root GSA via PIN7.

Discussion
Transcription factors, such as the MADS-box genes XAANTAL2/
AGL14 and INDETERMINATE DOMAIN 14/15/16 have been
shown to function in plant development by regulating PIN gene
expression30,31. The disruption of auxin transport such as in
pin2,3,4,7 multiple mutants leads to excess stomatal production
and abnormal patterns. The preferential expression of PIN3 in
stomatal precursors is closely coordinated with dynamic cellular
auxin activities, as well as cell fate and differentiation processes32.
FLP and MYB88 were previously shown to act redundantly
during the last division in the stomatal pathway by regulating the

transcription of core cell cycle genes3–5. FLP and MYB88 function
as pleiotropic transcription factors in regulating various
plant development processes and responses to environmental
changes6,7. Here we show that FLP, in cooperation with MYB88,
directly regulate PIN3 and PIN7 gene transcription during root
gravitropism.

Plant gravitropic responses include three phases: sensing, signal
transduction and asymmetric organ growth. Quantitative analysis
of differential DII-VENUS and DR5 signals revealed that the
delayed gravitropic response of flp correlates with reduced auxin
asymmetry across roots. The low PIN3/7 expression in flp
collumela cells may be predicted to have an impact on shootward
redistribution of auxin13,14; thus, auxin accumulation may be
expected in this region. However, the overall auxin levels/
activities (reflected by DII and DR5) in flp gravity-sensing cells
are lower than in wild-type roots. This may have resulted either
from less auxin rootward flow to this region8,12 or from reduced
sensitivity to auxin in these cells when FLP function is impaired.
In recent times, the FLP transcription factor was shown to be
auxin responsive and downstream of ARF7. In addition, PIN3 is
direct target of both ARF7 and FLP during lateral root
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development28. In this study, we also found an auxin-induced
PIN3 expression in wild-type columella cells. However,
auxin-induced PIN3 upregulation is almost abolished in flp-1
mutant primary roots, indicating that FLP dominates PIN3
transcriptional activity, results consistent with the absence of
MYB88 (in this study) and ARF7 (ref. 33) from gravity-sensing
cells. Whether FLP is involved in a feed-forward transcriptional
regulation of auxin homeostasis or signalling in the columella
needs further investigation.

MYB88 driven by the FLP promoter, that is, FLP::MYB88, is
able to complement gravitropic defects in flp-1 primary roots,
consistent with both FLP and MYB88 being capable of regulating
downstream PIN3 or PIN7 transcription. However, MYB88
expressed by its own promoter, MYB88::MYB88, fails to rescue
flp-1, suggesting that the functions of FLP and MYB88 in specific

tissues depend on the preferential expression patterns of these
genes. Consistent with this, the expression patterns of FLP and
MYB88 in developing lateral roots are closely associated with the
specific temporal expression of PIN3 and PIN7, as well as their
distinct functions in GSA determination.

Methods
Plant materials and growth conditions. The Arabidopsis thaliana ecotypes
Columbia (Col-0) and Ler were used as controls. The following lines flp-1,
flp-1 myb88, myb88 (ref. 1), pin3-4, pin7-1 (ref. 34), PIN2::PIN2-GFP25,
PIN3::PIN3-GFP14, PIN7::PIN7-GFP26, FLP::GUS-GFP1, MYB88::GUS-GFP4,
DR5rev::3xVENUS-N7 (ref. 24), 35S::DII-VENUS-N7 (ref. 16), FLP::FLP-GFP35

were used. The homozygous flp-1 and myb88 were crossed to PIN3::PIN3-GFP,
PIN7::PIN7-GFP, FLP::PIN3-YFP, DR5rev::3xVENUS-N7, 35S::DII-VENUS-N7, and
FLP::FLP-GFP and homozygous lines were used. FLP::MYB88 flp-1, FLP::PIN7-
GFP flp-1, MYB88::MYB88 flp-1, MYB88::PIN7-GFP flp-1, MYB88::MYB88 myb88,
MYB88::PIN7-GFP myb88 were generated by the floral-dip method36. Transgenic
plants were then selected on half-strength Murashige and Skoog (MS) medium
containing 25 mg ml� 1 hygromycin and further confirmed by PCR analysis.

Arabidopsis seeds were surface sterilized in an aqueous solution of 30% (w/v)
hydrogen peroxide and 85% (v/v) ethanol in volume ratio 1:4 for 40 s. The seeds
were then plated onto half-strength MS medium supplemented with 1% sucrose
and 1% agar, and incubated for 2 days at 4 �C in the dark before being transferred
into growth chamber under a 16/8 h light/dark cycle, 20–24 �C.

For NAA (Sigma-Aldrich) treatment, seeds were sown on the surface of
half-strength MS medium supplemented with 0.5 mM NAA and allowed to grow
for 4 days before sampling. For IAA pretreatment, 4-day-old seedlings were
incubated in liquid half-strength MS medium supplemented with 1 nM IAA
(Sigma-Aldrich) for 2 h.

Gravity stimulation. For measuring the growth responses of primary roots to
gravity stimulation, vertically grown 4-day-old seedlings were rotated 90�. Images
of the roots were captured every 2 h after rotation. The curvature angles of the
primary root were measured with reference to the gravity vector using ImageJ
software (NIH, http://rsb.info.nih.gov/ij/). Experiments were repeated
three times independently; 90–110 roots were scored for each genotype or
transgenic line.

Gravity set-point angle measurement. Ten-day-old roots were used for GSA
measurement. Individual GSA values were sorted into the following categories:
0–30�, 30–50�, 50–70�, 70–90� and 90–110� for GSA I, and 0–30�, 30–50�, 50–70�
and 70–90� for GSA II. Experiments were repeated independently three times and
40–60 lateral roots were scored for each mutant or transgenic line. Student’s
two-tailed t-test was employed for each category. The cumulative distribution plots
were constructed using ‘R’ (http://www.r-project.org/about.html). KS tests were
performed using ‘R’ as well.

Plasmid construction and protein expression. For yeast one-hybrid assays, each
fragment of the PIN3 or the PIN7 promoter was amplified by PCR using the
primers shown in Supplementary Table 1 and was then cloned into the EcoRI/XhoI
or KpnI/XhoI sites of pLacZ-2m (ref. 37). The full-length complementary DNAs of
FLP and MYB88 were cloned into EcoRI/XhoI sites of pB42AD vector. For
FLP::PIN7-GFP and MYB88::PIN7-GFP, the promoters and cDNA were amplified,
fused with a GFP fragment and then subcloned into PstI/NcoI and NcoI/KpnI sites
of pCAMBIA1300 vector (CAMBIA). For FLP::MYB88 and MYB88::MYB88,
constructs were cloned into PstI/NcoI and NcoI/SacI sites of pCAMBIA1300 vector
(CAMBIA). For FLP::PIN3-YFP, the FLP promoter was amplified and cloned into
pDONR P4-P1R. Then, FLP promoter and PIN3-YFP in pDONR 221 (ref. 38) were
cloned into pB7m24GW28.

To prepare recombinant His-FLP and His-MYB88 proteins, the full-length
cDNA of FLP or MYB88 was amplified using the primers shown in Supplementary
Table 1, and was then cloned into EcoRI/XhoI sites of pET28a vector. Fusion
proteins were expressed in the BL21 (DE3) strain of Escherichia coli by induction
with 1 mM isopropyl-b-D-thiogalactoside at 18 �C for 24 h. The His-FLP and
His-MYB88 proteins were purified by Ni-NTA agarose (GE Healthcare) following
the manufacturer’s instructions. All the primers used in this study are listed in
Supplementary Table 1.

Imaging and quantitative analysis. To obtain differential interference contrast
images, roots were mounted in 50% glycerol and then imaged with an Olympus
BX51 microscope. For fluorescence, a confocal laser scanning microscope Olympus
FV1000-MPE was used. To reveal cell outlines, samples were briefly stained in 0.5%
propidium iodide before imaging. To indicate fluorescence intensity, confocal
images were converted into heat map images by applying a Fire lookup table plugin
installed in ImageJ software.

For the quantitative analysis of DR5 fluorescence, after brief staining with
propidium iodide, DR5rev::3xVENUS-N7 confocal image stacks (with an interval of
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1.02 mm) near the midline of 4-day-old primary roots were collected, to ensure the
nuclei of centrally located columella cells are included. As the localization of nuclei
in different cells was not uniform, intensities of nuclear DR5 signals from single
focal planes were measured and only the maximum value from each cell was used.
To get the relative DR5 levels for each mutant and treatment, the total maximum
values of central columella cells (total nine cells from C1–C3 layers) were compared
with that in untreated wild-type roots.

For DII-VENUS florescence intensity measurement, selected 4-day-old
35S::DII-VENUS-N7 seedlings were transplanted onto the surface of half-strength
MS medium and then maintained for 2 h before a 90� reorientation. Seedlings were
sampled at 0, 10, 20 and 30 min after reorientation. After brief staining with
propidium iodide, confocal image stacks (with an interval of 1.02 mm) near the
midline of primary root were collected immediately. Eight LRCs (within layer 2–4)
from each side, which were adjacent to columella cells, were selected. The
maximum integrated fluorescence intensity of nuclear DII-VENUS of each cell was
measured using ImageJ and the background was then subtracted. The ratio of
DII-VENUS is the value of total intensity of eight LRCs at the upper side relative to
that at the lower side.

For measuring the overall intensity of PIN3-GFP, five confocal optical sections
near the midline of primary root were projected (2.5 mm thickness). Next, the
integrated fluorescence intensities of PIN3-GFP signals from columella cells in the
view were measured using ImageJ.

Amyloplast observation and time-lapse imaging. To visualize amyloplasts
in root columella cells, 4-day-old roots were stained with Lugol regent
(Sigma-Aldrich) for 45 s before imaging. To image amyloplast movement in
columella cells, roots were mounted on a rotatable stage of a horizontally oriented
microscope. Differential interference contrast images were captured at 1-s intervals
for 600 s after a 90� reorientation.

b-Glucuronidase staining. Four-day-old FLP::GUS-GFP and MYB88::GUS-GFP
seedlings were first incubated in 90% acetone for 0.5 h at 4 �C. Seedlings were then
washed in phosphate buffer and immersed in the enzymatic reaction mixture
(1 mg ml� 1 X-Gluc, 2 mM K4FeCN6, 0.5 mM K3FeCN6, 0.1% Triton X-100 in
100 mM phosphate buffer, pH 7.4) for 4 h at 37 �C in the dark. Seedlings were then
cleared before imaging.

Yeast one-hybrid assay. The activation domain fusion constructs (FLP-AD and
MYB88-AD) and LacZ reporter plasmids pPIN3-A-LacZ-2m, pPIN3-B-LacZ-2m,
pPIN3-C-LacZ-2m, pPIN3-D-LacZ-2m, pPIN3-E-LacZ-2m, pPIN3-F-LacZ-2m,
pPIN7-A-LacZ-2m, pPIN7-B-LacZ-2m or pPIN7-C-LacZ-2m were co-transformed
into yeast EGY48.

Electrophoretic mobility shift assay. Oligonucleotide probes were synthesized
and labelled with biotin at the 30-end (Thermo Scientific, 89818). EMSA assay was
performed using a LightShift Chemiluminescent EMSA kit (Thermo Scientific,
20148). Biotin-labelled probes were incubated in 1� binding buffer, 2.5% glycerol,
50 mM KCl, 5 mM MgCl2, 0.05% NP-40 and 10 mM EDTA with or without proteins
at room temperature for 20 min. For the non-labelled probe competition, these
probes were added to the reactions. Probe sequences are listed in Supplementary
Table 2. The DNA–protein binding singals were exposed to X-ray films. Uncropped
scans of X-ray films used in figures are included in Supplementary Fig. 9.

ChIP–qPCR assay. Four-day-old FLP::FLP-GFP transgenic seedlings and
GFP antibodies (Abcam, ab290) were used for ChIP assays39. About 1.5 g of
FLP::FLP-GFP transgenic was harvested from seedlings and cross-linked with 1%
formaldehyde with extraction buffer, and then by the isolation and sonication of
chromatin. Samples were immunoprecipitated with 4 ml antibodies against GFP
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Table 1 | Rescue test of flp-1 and myb88 lateral root GSA
phenotypes.

Transformation Lateral root

FLP::FLP-GFP flp-1 Complemented (GSA I)* (n¼60)
FLP::MYB88 flp-1 Complemented (GSA I) (n¼ 60)
FLP::PIN3-YFP flp-1 Complemented (GSA I) (n¼ 60)
FLP::PIN7-GFP flp-1 Complemented (GSA I) (n¼ 60)
MYB88::MYB88 flp-1 Not complemented (GSA I)w (n¼ 58)
MYB88::PIN7-GFP flp-1 Not complemented (GSA I) (n¼ 57)
MYB88::MYB88 myb88 Complemented (GSA II) (n¼42)
MYB88::PIN7-GFP myb88 Complemented (GSA II) (n¼60)

GSA, gravitropic set-point angle; KS, Kolmogorov–Smirnov.
*Not significantly different from Col after statistical analysis is considered as ‘Complemented’
(KS test; P40.05; three individual experiments, 40–60 lateral roots for each transgenic line).
wSignificantly different from Col is considered as ‘Not complemented’ (KS test; *Po0.05,
**Po0.01; three individual experiments; n, represents the number of lateral roots scored for
each transgenic line).
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(1:500 dilution). Finally, ChIP DNA was quantified using quantitative real-time
PCR, with four sets of primers spanning the upstream promoter, the candidate
motif and the coding region. Primers are listed in Supplementary Table 1.

Quantitative real-time PCR. Total RNA from 5-day-old roots (50 mg) was
extracted using TRNzol reagent (Tiangen) and the cDNA was synthesized by
reverse transcriptase (Promega). Quantitative real-time PCR was performed using
the SYBR Premix Ex Taq kit (Takara) on a Corbett RG3000. EIF4A or UBQ10 were
amplified as an internal positive control for real-time–qPCR and ChIP–qPCR,
respectively. Experiments were repeated three times independently. Primers are
listed in Supplementary Table 1.

In-situ hybridization. The PIN3 antisense and sense probes were transcribed as
described13. The whole-mount in situ method was as previously described40.
Three-day-old roots of Col and flp-1 were fixed in 4% paraformaldehyde for 45 min
at room temperature. The samples were dehydrated via an ethanol and an
ethanol:xylene series. Proteinase K-degraded proteins (60 mg ml� 1) were bound to
mRNA before hybridization. Next, hybridization was carried out with antisense
and sense probe at 50 �C for 16 h. For signal detection, the NitroBlue tetrazolium
chloride and 5-bromo-4-chloro-3-indolyl phosphate staining time was 1 h.
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