
Alpha-Band Rhythms in Visual Task Performance: Phase-
Locking by Rhythmic Sensory Stimulation
Tom A. de Graaf1,2*, Joachim Gross3, Gavin Paterson3, Tessa Rusch3,4, Alexander T. Sack1,2, Gregor Thut3

1 Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands, 2 Maastricht Brain Imaging Center,

Maastricht, The Netherlands, 3 Centre of Cognitive NeuroImaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom,

4 Department of Psychology, Ludwig Maximilians University Munich, Munich, Germany

Abstract

Oscillations are an important aspect of neuronal activity. Interestingly, oscillatory patterns are also observed in behaviour,
such as in visual performance measures after the presentation of a brief sensory event in the visual or another modality.
These oscillations in visual performance cycle at the typical frequencies of brain rhythms, suggesting that perception may
be closely linked to brain oscillations. We here investigated this link for a prominent rhythm of the visual system (the alpha-
rhythm, 8–12 Hz) by applying rhythmic visual stimulation at alpha-frequency (10.6 Hz), known to lead to a resonance
response in visual areas, and testing its effects on subsequent visual target discrimination. Our data show that rhythmic
visual stimulation at 10.6 Hz: 1) has specific behavioral consequences, relative to stimulation at control frequencies (3.9 Hz,
7.1 Hz, 14.2 Hz), and 2) leads to alpha-band oscillations in visual performance measures, that 3) correlate in precise
frequency across individuals with resting alpha-rhythms recorded over parieto-occipital areas. The most parsimonious
explanation for these three findings is entrainment (phase-locking) of ongoing perceptually relevant alpha-band brain
oscillations by rhythmic sensory events. These findings are in line with occipital alpha-oscillations underlying periodicity in
visual performance, and suggest that rhythmic stimulation at frequencies of intrinsic brain-rhythms can be used to reveal
influences of these rhythms on task performance to study their functional roles.
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Introduction

Rhythms are ubiquitous in biological systems. From the sniffing

of rodents [1] to the dynamics of the human attention system [2],

temporal regularity is a fundamental property for organisms.

While we have been aware of such periodicity in the brain [3], a

number of recent studies has emphasized that rhythmicity is also

apparent in behavior.

A single event can ‘reverberate’ in perceptual systems, leading to

an oscillatory pattern in visual task performance time-locked to the

event. For instance, one sound, when predictive of upcoming

visual events, can lead to a cyclic pattern in subsequent visual

target detection [4] and visual cortex reactivity [5]. A single visual

flash, presented in one hemifield to capture attention, results in

cyclic patterns of visual detection performance in this hemifield,

and opposing (anti-phase) detection performance in the opposite

hemifield [6]. Multiple events, if presented in a stable rhythm,

have similar periodic effects, since rhythmic trains of events

generally benefit processing of subsequent stimuli, if these are in

phase with the preceding train [7–11]. Even continuous streams of

multiple but non-periodic (random) events can be associated with

illusory flicker perception at a specific frequency (see [12] for

‘perceptual echoes’). Such findings suggest a fundamental role for

periodicity in perception and attention.

At the same time, oscillations in the brain have been linked to

perception, attention and exploratory behavior. Sensory detection

performance [13–15] and saccadic latency [16,17] depend on the

momentary phase of ongoing brain oscillations. Perception

depends on oscillatory phase as a function of the power of these

oscillations [14], and power and phase of ongoing oscillatory brain

activity can be modulated by rhythmic sensory stimulation [9,18–

20], as can perception (see above; [7–11]); a process linked to and

amenable to attention [9] and involving phase-locking of brain

oscillations to the rhythmic sensory events [9,21]. Finally, many of

the cyclic patterns in visual performance reviewed above are in the

frequency range of brain oscillations [5,6]. Collectively, these

findings raise the hypothesis that perception is closely linked to

oscillations in the brain (see e.g. [22]). They also suggest that

sensory stimulation may be used to study the link between

perception/attention and oscillations via phase-locking of the two

measures.

Here, we aim to test these hypotheses for a prominent rhythm of

the visual system; the occipito-parietal alpha-oscillation (8–12 Hz).

This brain rhythm has been suggested to be perceptually relevant,

because modulated in both amplitude and phase by attention [23–

28] and related to perception [14,21,27,29–32]. We here consider

the link between the occipital alpha-rhythm and perception/

attention by presenting rhythmic visual events at a frequency

centered in the alpha band (around 10 Hz) and probing its
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consequences on subsequent visual performance. Such rhythmic,

10 Hz visual stimulation has been shown to enhance occipital-

parietal alpha power [19,33,34]. This oscillatory response

enhancement is frequency-sensitive (i.e. dominant for visual

stimulation at 10 Hz relative to stimulation at adjacent (flanker)

frequencies [19]), and therefore likely to reflect a resonance

response of the visual system [19]. This raises the question whether

the alpha-power enhancement by 10 Hz-stimulation is due to the

promotion of naturally occurring, perceptually relevant alpha

oscillations (possibly through their phase-locking; corresponding to

‘‘entrainment’’). If so, 10 Hz-stimulation should have a number of

testable consequences on visual performance measures, with these

predictions resting on current models on the role of alpha

oscillations [35–37].

These predictions are: Firstly, that rhythmic stimulus trains at

alpha frequency (10 Hz) should disproportionally influence visual/

attentional performance relative to stimulation at flanker frequen-

cies outside the alpha-band (i.e. should have alpha-specific effects),

supporting the view that alpha-rhythms and perception are

intimately linked [35,38]. In terms of direction, one would expect

this alpha-specific effect to interfere with visual/attentional

performance in line with the proposed inhibitory role of alpha

rhythms [36,37]. Secondly, after rhythmic alpha-stimulation,

visual task performance should oscillate over time with alpha-

frequency (periodicity in perception), supporting models that

perception depends on (alpha) phase [37,39]. Thirdly, these

behavioral alpha-band oscillations should correlate in precise

frequency with naturally occurring alpha oscillations in the brain,

which would more firmly link brain oscillations to cyclic patterns

in visual performance measures and speak in favor of their causal

implication in perception.

In the current study, we tested these three predictions in two

experiments using rhythmic stimulation protocols inspired from

[7] and [10] (see Methods for details), in which rhythmic events

precede an imperative visual target. In experiment 1, we examined

visual performance after rhythmic visual stimulation at 10.6 Hz (in

the alpha-band) in comparison to control (flanker) frequencies

below and above this band (3.9 Hz, 7.1 Hz, 14.2 Hz, 17 Hz).

Crucially, the rhythmic stimulation protocol we employed ([7,10])

foremost engages attention [7,11,25]. This is because the rhythmic

events cue for a likely time point and spatial position of

forthcoming events in the event sequence [7,10,11,21,25]. Here,

we presented targets either at this cued (i.e. congruent) or at an

alternative (i.e. incongruent) location. This is expected to lead to

enhanced perception accuracy at congruently as compared to

incongruently cued positions; an attention effect well-established

for a wide range of cueing frequencies (1.8 Hz in [7], 2.5 Hz in

[11,25], 12.1 Hz in [14,21]), henceforth referred to as ‘cueing

benefit’. This cueing benefit was therefore our starting point, or

baseline, relative to which we assessed our predictions in

experiment 1 (i.e. diverging behavioral effects for alpha-band

cueing, i.e. counteracting the cueing benefit, due to entrainment of

inhibitory brain rhythms oscillating in this frequency band). In

experiment 2, we more directly tested the prediction that alpha-

band rhythmic cueing would lead to cycling visual task perfor-

mance, presumably in coherence with underlying alpha oscilla-

tions in the brain. To this end, we correlated individual

fluctuations in visual task performance with resting-state brain

oscillations, and also evaluated cycling visual task performance

after rhythmic cueing by an alpha-subharmonic frequency

(5.3 Hz).

Methods

Participants
For experiment 1, a total of 22 participants volunteered. Two

were authors of this paper (T.R., T.A.G.), 20 were students at

Glasgow University, receiving course credits for participation. One

participant was excluded due to outlier performance (reaction

times .2.5 standard deviations (SD) above group average, target

discrimination accuracy .2.5SD below group average), leaving a

total of 21 participants (5 male, 2263 yrs old, 4 left-handed). For

experiment 2, 20 participants volunteered. Two were authors of

this paper (T.R., T.A.G.). 18 were students at Glasgow University,

compensated with course credits. Two participants were excluded

on the basis of outlier performance (S1: reaction times .2.5SD

above group average, S2: target discrimination accuracy .2.5SD

below new group average). In total 18 subjects were included in

the analysis (10 male, 2364 yrs, 3 left-handed). All subjects had

normal or corrected-to-normal vision.

Ethics Statement
This work was approved by the ethics committee of the

institution where measurements took place (Centre of Cognitive

NeuroImaging, Institute of Neuroscience and Psychology, Uni-

versity of Glasgow, United Kingdom). All subjects provided

written informed consent.

Rhythmic Stimulation Paradigms
We implemented two rhythmic stimulation paradigms: a

stationary as well as an apparent motion entrainment/cueing

paradigm (‘flicker’ versus ‘motion’ cues). We call these paradigms

interchangeably ‘entrainment’ or ‘cueing’ as the rhythmic stimulus

train (the ‘entrainers’) cues for the upcoming visual target. Our

design for ‘flicker’ entrainment (cueing) was inspired from

Mathewson et al. [10], who showed that rhythmically presenting

a visual annulus at one position benefits perception of an

upcoming visual target at this position, when targets were

presented in phase with the preceding train (possibly constituting

a baseline attentional benefit). Only a few rhythmic pre-target cues

(n = 2–8) sufficed to benefit perception [10]. Our design for

‘motion’ entrainment (cueing) was inspired from Doherty et al. [8]

who showed that a visual disk rhythmically crossing the computer

monitor benefits subsequent target perception if the target position

and/or timing were predictable from the entrainment cues

(inferred to represent an exogenous attentional benefit, see e.g.

[11]). Importantly, flicker cues are also associated with a resonance

(entrainment) phenomenon in oscillatory brain response at 10 Hz

[19], with potential consequences on perception (our hypothesis).

The motion entrainment condition was implemented in order to

test to what extent perceptual consequences of entrainment at

alpha frequency would be restricted to retinotopically specific

mechanisms – i.e. would only be observed with flicker stimulation

– or also applies to rhythmic motion stimuli, in which entrainers

move across the visual fields. In our modified versions of these

paradigms, ‘flicker’ and ‘motion’ cueing were implemented as

follows.

A matrix of 567 annuli and a central fixation cross were

presented at all times on the screen (grey on black background,

Fig. 1A and B). We refer to these annuli as ‘placeholders’.

Entrainers consisted of placeholders briefly ‘lighting up’, or

‘flashing’. During flicker entrainment, one placeholder would flash

four times consecutively, before a visual target was presented (see

Figure 1A, right for one example trial). Only placeholders of two

positions could flash (diagonal to the lower right or lower left of the

fixation cross, marked in Fig. 1B for illustration purposes by
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arrows), and targets could appear either in the center of the

placeholder that flashed, or in the opposite hemifield with 1:1

probability. Target position could thus be congruent or incongruent

relative to cued position, but importantly, flicker cues were

spatially non-predictive as to target positions. During motion

entrainment, four placeholders of the row of circles below the

fixation cross (marked in Fig. 1B for illustration purposes by a

rectangle) would flash in succession, either starting with the right-

most circle and ending with the central circle directly underneath

the fixation cross, or starting with the left-most circle and ending

with the same central circle (see Figure 1A, left for one example

trial). This was followed by a target presented in the adjacent

placeholders, left or right from the last entrainer with 1:1

probability (i.e. in or out-of motion path, and at the same

positions as the targets of the flicker condition, marked in Fig. 1B).

Thus, again target positions could be congruent or incongruent relative

to the direction of motion cueing, but motion cues were spatially

non-predictive as to target positions.

We foremost expected an advantage of visual task performance

at cued versus uncued positions (in line with [7,10]). Entrainers

flashing at/towards the left or right position (flicker/motion cues)

should benefit visual performance at cued (left or right) location.

Note that our task discouraged endogenous cueing (by rendering

target appearance at cued and uncued positions equally probable),

and emphasized exogenous cueing to specific positions (by the

spatiotemporal structure of the rhythmic stimulus trains). Irre-

spective of the mechanisms employed, we expected (1) this cueing

benefit to be disproportionally affected by alpha-entrainment/

cueing, (2) visual task performance to cycle at alpha-frequency,

and (3) periodicity in perception to correlate with periodicity in

brain rhythms, if brain oscillations in the alpha-band indeed play a

role in perception.

Figure 1. Stimuli and Design. A. A 567 array of annuli and a fixation cross were presented at all times. Rhythmic cueing consisted of the briefly
(35.3 ms) brightening (‘flashing’) of annuli in a predictable sequence. In ‘motion entrainment’ (left), 4 annuli would flash along a spatial path, starting
either with the left-most (example) or right-most annulus, and ending with the central annulus below the fixation cross. A visual target was then
presented in the centre of the next annulus of the motion path (cued/congruent location) or in the annulus that flashed before (incongruent
location). In ‘flicker entrainment’ (right), the same annulus would flash 4 times. The flashing annulus could be at the left (example) or right target
locations. Depending on whether the target location coincided with the cued location, cueing was either congruent or incongruent. For both forms
of entrainment, targets appeared at congruent and incongruent positions with equal likelihood, thus cueing was spatially non-predictive. B. Enlarged
view of the stimulus array, indicating for illustration purposes by rectangle the row of annuli that were involved in motion/flicker cueing, and by
arrows the two possible target locations. C. Design of Experiment 1 testing five cueing frequencies. Visual targets were always ‘in-phase’ with the
cue-train. D. Design of Experiment 2 testing two cueing frequencies and 11 stimulus onset asynchronies (from last cue to visual target). These
covered three cycles at alpha frequency.
doi:10.1371/journal.pone.0060035.g001
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Experimental settings, stimulus parameters, and task
Participants were seated 0.30 m in front of a CRT monitor

(refresh rate 85 Hz). Viewing distance was kept stable using a chin

rest. In an initial training phase, participants were familiarized

with the task, and target salience was individually adjusted to

approximately 80% target discrimination accuracy to avoid ceiling

effects. The training phase consisted of a subset of trials but

included all conditions tested in the main experiment, and was

repeated until stable performance was reached.

The annuli of the placeholder matrix were 1.5 cm in diameter,

spaced apart 5.3 cm horizontally and 5 cm vertically. For

entrainment, annuli briefly changed (flashed) from grey to white

for three frames (35.3 ms). Visual targets consisted of an ‘x’ or ‘+’

and were always presented for the duration of one frame only

(11.8 ms). Participants were asked to fixate the central fixation

cross at all times. The task was to indicate by means of button

presses whether a ‘+’ or an ‘x’ sign (rotated ‘+’) appeared on

screen.

Testing for alpha-specificity of effects (experiment 1)
In experiment 1, we evaluated the effects of congruency (cued

vs. uncued position), and rhythmic cueing type (flicker vs. motion).

To test for frequency-specificity, we implemented entrainment at

five frequencies (3.9 Hz, 7.1 Hz, 10.6 Hz, 14.2 Hz, 17 Hz,

Fig. 1C). Note that for all conditions of Experiment 1 (motion

vs. flicker, congruent vs. incongruent, 5 frequencies), visual targets

followed ‘in phase’ with the entrainment, i.e, a regular interstim-

ulus interval was used for presenting the four entrainers and the

subsequent targets (Fig. 1C) such that the onset of the visual target

coincided with the onset of what would have been a fifth entrainer

in the train. All conditions were presented in random order across

trials in five runs. A total of 1200 trials were sampled, resulting in

60 trials per condition cell per participant.

Testing for periodicity in visual performance measures
(experiment 2)

In experiment 2 only motion entrainment was implemented.

Aside from testing for congruency effects (see above), we tested

entrainment at two frequencies (10.6 Hz, 5.3 Hz) and varied

stimulus onset asynchrony (SOA) between the fourth (last)

entrainer and the visual target (Fig. 1D). We tested 11 SOAs,

starting from 47.1 ms, up to 282.4 ms, in steps of 23.5 ms (2

frames). Note that the SOA at which the visual target was in-phase

with the entrainers is at 94.1 ms for 10.6 Hz-cueing and at

188.2 ms for 5.3 Hz-cueing (3rd versus 7th tested SOA, Fig. 1D,

see dashed annuli), and that our range of SOAs covered three

cycles of an alpha-oscillation, allowing for detection of a possible

cyclic pattern in behavioral performance at alpha-frequency. All

conditions were presented in random order across trials in seven

runs. A total of 1232 trials were sampled, resulting in 28 trials per

condition cell per participant.

Testing for a link to brain rhythms (experiment 2b)
To evaluate the relationship between the cyclic pattern in visual

performance and actual brain oscillations, we measured resting-

state alpha oscillations (eyes open and closed, five minutes) using a

248-magnetometer whole-head MEG-system (MAGNESH 3600

WH, 4-D Neuroimaging) in fourteen participants of experiment 2

who were available for this follow-up measurement. One subject

who could not be measured with MEG was measured with EEG

instead (8 parieto-occipital electrodes), bringing the total number

of subjects to 15. For simplicity we continue to refer to ‘‘MEG

measurements’’ below.

Preprocessing behavioral data
Only trials with reaction times between 200 and 1200 ms were

included to remove outliers in both experiments. Accuracy

(proportion correct) served as the dependent variable of interest.

Analysis Experiment 1
We implemented a full within-subjects design with factors

Rhythmic cueing type (motion, flicker)6Congruency of cueing

(congruent, incongruent)6Frequency of cueing (5 levels). Accuracy

(proportion correct) per condition was subjected to repeated-

measures Analysis of Variance (RM-ANOVA). Results were

further explored using follow-up RM-ANOVAs or 2-tailed

paired-samples t-tests where appropriate, as indicated in the

Results section.

Analysis Experiment 2
In experiment 2, we focused on the temporal profile of visual

task performance over Delays (11 SOAs) between visual target

onset and the last cue. To evaluate whether a cyclic pattern in

visual task performance was apparent, we applied curve-fitting

procedures in custom software using robust nonlinear least-squares

fitting in MATLAB. We analyzed group-averaged accuracy for all

conditions separately (10.6 Hz and 5.3 Hz, spatially congruent

and incongruent locations), after linearly detrending the data to

remove linear effects across SOA and retain any cyclic patterns

around the mean. We then fitted both 10 Hz and 5 Hz cosine

curves to the data (fixed frequency, variable phase). R-squared

values of the group mean data were statistically evaluated using

bootstrapping. To this end, labels of the 11 SOAs were randomly

permuted over 2500 iterations, and a model cosine (10 Hz or

5 Hz) was fitted to the resulting behavioral pattern each time,

generating a null distribution of 2500 R-squared values. The R-

squared value obtained from the actual data was related to this

created null-distribution to evaluate whether it fell in the top-95th

percentile. If so, this by definition indicated that the model cosine

significantly explained variance in the group data.

Aside from the above-described group analysis, we performed a

secondary analysis in which we fitted model cosines to the

behavioral data of individual participants, obtaining two R-

squared values for each participant, cueing frequency, and

congruency level. These two R-squared values resulted from

fitting a flexible 10 Hz cosine (freely ranging between 8–12 Hz)

and a flexible 5 Hz cosine (freely ranging between 3–7 Hz); this

flexibility allowing for inter-individual variability in peak frequen-

cy. A second-level analysis then evaluated whether 10 Hz cosine

models fitted the individual data better than 5 Hz cosine models

(one-tailed paired-samples t-test between 10 Hz-based versus

5 Hz-based R-squared values).

Analysis Experiment 2b
Using standard Fourier transforms over parieto-occipital sensors

of the recorded MEG data, we could identify a clear peak in the

alpha band (8–12 Hz) for each participant (individual alpha-

frequency). We then fitted a model alpha cosine (using robust

nonlinear least-squares fitting) to the behavioral 10.6 Hz-data of

each of the 15 participants to extract the frequency that best

reflects the individual behavioural patterns (fitting based on freely-

ranging frequencies, i.e. 7–13 Hz). Note that on the group level, a

cosine always better fitted the detrended than the original data.

On the individual level, detrending distorted the behavioural data

in some participants who showed no strong trend but had outliers

at the first or last position. Outliers affected the (non-robust)

detrending but not the (robust) curve fitting. To avoid biased
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results, fitting was performed on both original and detrended data

and the best-fitting result was used to extract the individual

behavioural alpha peak. We then tested for a positive relationship

between frequencies in behavioural and MEG data (Pearson

correlation, one-tailed testing) to compare behavioral patterns with

intrinsic brain oscillations.

Results

Alpha-specific breakdown of cueing benefits (experiment
1)

We investigated spatial cueing benefits from attentional

mechanisms associated with rhythmic (entrainment) cues as a

function of cueing frequency in two entrainment conditions (flicker

vs. motion, Fig. 1A–B). We tested this by assessing visual task

performance (target discrimination accuracy) at the first time-point

in phase with the preceding entrainer-cues (Fig. 1C). The overall

repeated-measures ANOVA on visual discrimination accuracy

with factors Rhythmic Cueing Type (flicker vs. motion), Congru-

ency of cueing (congruent vs. incongruent), and Frequency of

cueing (3.9, 7.1, 10.6, 14.2 vs. 17 Hz) showed a main effect of

Rhythmic Cueing Type (F[1,20] = 7.01, P,0.05). Performance

was weakly but significantly better with motion cueing (accura-

cy = 0.82) than flicker cueing (accuracy = 0.80). This is likely due

to a forward masking of the visual target by the final cue, which

occurs in the flicker, but not in the motion condition. Importantly,

Rhythmic Cueing Type did not interact with any other condition

(3-way interaction: F[4,80] = 0.74, P = 0.571, 2-way interaction

with Congruency: F[1,20] = 0.12, P = 0.728, 2-way interaction

with Frequency: F[4,20] = 1.18, P = 0.325). In other words, all the

effects we are about to describe were statistically not different for

both types of cueing, and therefore likely to be independent of

masking.

The overall ANOVA revealed a main effect of Congruency of

cueing (F[1,20] = 8.44, P,0.01), with better visual task perfor-

mance at cued than uncued locations (cueing benefit), despite

rhythmic cueing being spatially non-predictive regarding upcom-

ing target position, and therefore possibly due to exogenous

attention mechanisms driven by the cues. Importantly, this effect

was dependent on the Frequency of cueing (F[4,80] = 3.69,

P,0.01), showing that attentional cueing was not equally effective

over all frequencies. Figure 2 illustrates visual task performance for

congruent and incongruent cueing across all frequencies, collapsed

over flicker and motion cueing (due to absence of a 3-way

interaction, see Table 1 for noncollapsed data across all

conditions). A cueing benefit with better performance at cued

than uncued location is observed for rhythmic cueing at 3.9 Hz (t-

test for congruency effect: P,0.001), 7.1 Hz (P,0.05) and

14.2 Hz (P,0.05), hence a broad range of frequencies, but not

for the 10.6 Hz (P = 0.662) or the 17 Hz (P = 0.783) condition.

There is thus a discontinuity of cueing benefit with alpha-

stimulation compared to adjacent flanker frequencies. In line with

our expectations, we therefore found a frequency-specific break-

down of cueing benefits at 10.6 Hz stimulation.

Periodicity in visual task performance at 10 Hz frequency
(experiment 2)

In experiment 2 we tested effects of cueing at 10.6 Hz and at the

first alpha-subharmonic (i.e. 5.3 Hz). If phase-locking of naturally

occurring alpha oscillations drives our results, this alpha-

subharmonic should have similar effects as 10.6 Hz-cueing

(although possibly to a lesser extent), since the 5.3 Hz condition

constitutes a ‘weak’ 10.6 Hz entrainer rhythm with every second

entrainer left out. As in experiment 1, 10.6 Hz-cueing in

experiment 2 did not result in a cueing benefit (P = 0.133), nor

did alpha-subharmonic cueing at 5.3 Hz (P = 0.293).

If 10.6 Hz-cueing indeed leads to promotion of underlying

alpha-oscillations in the brain (by phase-locking) and the phase of

this oscillation is functionally relevant for visual task performance,

then visual task performance should cycle over time post-train at

alpha-frequency, in coherence with the entrained alpha-oscilla-

tion. We tested target discrimination over a window of ,300 ms

after the last entrainer (3 alpha cycles, 11 SOAs), using only

motion entrainment. Figure 3 illustrates the time-course of visual

task performance after 10.6 Hz- and 5.3 Hz-cueing for spatially

congruent targets (after linear detrending, see Table 2 for original

data), with the best-fitting 10 Hz cosine models superimposed.

Visual inspection clearly reveals a cyclic pattern of performance

peaks after 10.6 Hz motion cueing (Fig. 3A). Moreover, the peaks

in this cyclic pattern are exactly in-phase with the preceding

rhythmic cues, and the periodic pattern seems to span over at least

three 10 Hz cycles (i.e. presenting three recurrent performance

peaks rather than only one confined to the first in-phase SOA,

94.1 ms). Curve fitting procedures and permutation tests (see

Methods) revealed that a 10 Hz cosine model significantly fitted

the 10.6 Hz group data (57% explained variance, bootstrapped

95%-cut-off at 53%), statistically confirming the presence of a

10 Hz cyclic pattern at the cued position. For comparison, 10 Hz

cosine models could not explain performance at the incongruent

position (7% explained variance: cut-off 54%), nor was perfor-

mance explained by 5 Hz models at congruent (15% explained

variance: cut-off 52%) or incongruent positions (31% explained

variance: cut-off 53%).

Cueing at 5.3 Hz led to similar results at cued positions (Fig. 3B).

Visual inspection again reveals an oscillatory pattern with 3 peaks.

Statistically, a 10 Hz cosine model significantly explained perfor-

mance fluctuations in the group curve in this congruent condition,

despite 5.3 Hz cueing (54% variance explained, cut-off: 53%). For

comparison, fitting a 5 Hz cosine wave to these data did not

explain its variance (6% explained, cut-off: 52%), nor was the

variance in the incongruent condition explained by 10 Hz fitting

(24% explained variance, cut-off 51%) or 5 Hz fitting (10%

explained variance: cut-off 49%). In short, there was more

evidence for a 10 Hz than a 5 Hz induced wave in the behavioural

data, despite cueing at 5.3 Hz. Moreover, just as in the 10.6 Hz

cueing condition, this effect was specific to the spatially congruent

condition.

While this analysis conclusively demonstrated the existence of

an alpha-frequency oscillation in the behavioral results, we

performed a second-level analysis on the individual behavioral

data. We again fitted 10 Hz and 5 Hz cosine models, and

subsequently tested whether the alpha-band cosine models could

better explain individual behavioral data than the 5 Hz cosine

model. The 10 Hz cosine models generally explained more

variance than 5 Hz cosine models, but this difference was not

significant for the incongruent cueing conditions (10.6 Hz:

P = 0.23, 5.3 Hz: P = 0.28). Yet, for congruent cueing at

10.6 Hz, individual behavioral data were significantly better

explained by an alpha-band cosine model than by a 5 Hz cosine

model (t[17] = 3.06; P,0.01). Moreover, this difference (10 Hz-

fit.5 Hz-fit) even approached significance (t[17] = 1.52, P = 0.07)

for (inherently suboptimal) cueing at the alpha-subharmonic

frequency of 5.3 Hz. Thus, the results from second-level statistics

performed on individual subjects largely converge with the

findings of our primary analysis on the group data described

above.
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Oscillations in visual task performance are linked to
occipito-parietal brain rhythms (Experiment 2b)

To link periodicity in visual performance to intrinsic alpha-

oscillations in the brain, we tested for a positive correlation

between the best fitting frequency in individual behavioural data

(cosine model, 10.6 Hz condition) and the individual alpha-

frequency over occipito-parietal areas in resting-state MEG

measurement (obtained for 15 participants of Experiment 2, see

Methods). Figure 4 shows the resulting scatterplot and regression

result. Although we used only four entrainers (and did not tune

stimulation frequency to individual alpha-oscillations, i.e. fixed it

to 10.6 Hz), the individual frequency in task performance

significantly correlated with the frequency of the intrinsic alpha-

oscillation obtained in the same participants on a different day

(r = 0.61, P,0.01). This correlation confirms a link between the

behavioral performance fluctuation and oscillations in the brain.

Moreover, it demonstrates that the behavioral results on the

group-level (Figure 3) are not due to only a small subsample of

participants.

Discussion

The results of experiment 1 reveal broadband rhythmic cueing

benefits on visual target discrimination for a frequency range

between at least ,4–14 Hz (in line with previous reports,

Figure 2. Results Experiment 1. Group averaged accuracies for target discrimination at congruent and incongruent locations as a function of the
five cueing frequencies (exploring a significant Congruency6Frequency interaction). In spite of spatially non-predictive cueing, significant cueing
benefits (higher accuracy at cued relative to uncued locations) were observed for cueing at 3.9 Hz, 7.1 Hz, and 14.2 Hz but broke down for
intermediate 10.6 Hz cueing in the alpha-band (8–12 Hz). At the highest frequency of 17 Hz, rhythmic cueing no longer led to cueing benefits. *:
significant cueing benefits at p,0.05.
doi:10.1371/journal.pone.0060035.g002

Table 1. Data of experiment 1 (outliers removed), split across conditions.

Flicker Cueing Motion Cueing

Cue Left Cue Right Cue Left Cue Right

Target Left Target Right Target Left Target Right Target Left Target Right Target Left Target Right

3.9 Hz 0.858 [0.076] 0.781 [0.090] 0.777 [0.091] 0.845 [0.079] 0.832 [0.082] 0.867 [0.074] 0.864 [0.075] 0.819 [0.084]

7.1 Hz 0.806 [0.086] 0.806 [0.086] 0.789 [0.089] 0.840 [0.080] 0.795 [0.088] 0.861 [0.076] 0.799 [0.087] 0.786 [0.090]

10.6 Hz 0.804 [0.087] 0.785 [0.090] 0.797 [0.088] 0.802 [0.087] 0.804 [0.087] 0.836 [0.081] 0.804 [0.087] 0.833 [0.082]

14.2 Hz 0.805 [0.086] 0.784 [0.090] 0.757 [0.094] 0.801 [0.087] 0.825 [0.083] 0.835 [0.081] 0.816 [0.085] 0.775 [0.091]

17 Hz 0.817 [0.084] 0.785 [0.090] 0.788 [0.089] 0.762 [0.093] 0.828 [0.082] 0.823 [0.083] 0.811 [0.085] 0.801 [0.087]

Displayed are average proportion correct and [standard error of the mean].
doi:10.1371/journal.pone.0060035.t001
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Figure 3. Results Experiment 2. Group averaged accuracy (linearly detrended) for target discrimination at congruent locations over 3 alpha cycles
post-train following A) 10.6 Hz- or B) 5.3 Hz-cueing. The best fitting 10 Hz model cosines are superimposed. For both 10.6 Hz and 5.3 Hz
(subharmonic) congruent cueing, we found recurrent peaks and troughs which were significantly fitted by a 10 Hz cosine function. Thus, a cyclic
pattern at alpha-frequency is apparent in visual task performance. Error bars reflect standard error of the mean after removal of baseline between-
subject variance (within-subject error bars: [49]).
doi:10.1371/journal.pone.0060035.g003
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[7,10,11,21,25], discussed below), with the exception of 10.6 Hz

cueing where benefits broke down. The latter frequency is

centered in the alpha-range (8–12 Hz), a prominent inhibitory

rhythm of the posterior brain [36]. In the second experiment, we

reproduced the break-down of cueing benefits for 10.6 Hz-

stimulation and subharmonical (5.3 Hz) cueing, and revealed an

alpha-rhythm in visual task performance over 3 cycles post-cueing,

which was also present after 5.3 Hz entrainment, and correlated in

frequency with individual resting alpha-oscillations over occipito-

parietal areas. The cyclic pattern in visual task performance at

frequencies of intrinsic rhythms following stimulation with these

frequencies not only suggests that these oscillations have been

entrained [19], but also that they are functionally relevant and that

entrainment paradigms can be used to study the role of oscillations

in behaviour [20,22].

Insights into the role of oscillatory brain activity in
attention and perception from alpha-specificity and
alpha-periodicity of behavioural effects to rhythmic
visual stimulation

Experiment 1 shows that the entrainment/cueing effects on

target discrimination are frequency-specific. Cueing benefits,

which are generally broadband, can break down for stimulation

at alpha-frequency (10.6 Hz), or its subharmonic (5.3 Hz). The

most likely explanation of these results is that two competing

mechanisms are taking place; a benefit from attentional deploy-

ment by rhythmic cueing on the one hand, which is abolished by

consequences of rhythmic stimulation at alpha frequency on the

other hand. Both competing mechanisms are likely to involve

opposite changes in perceptually relevant alpha-oscillations in

occipito-parietal cortex, as identified in previous research (see e.g.

[19] vs. [25]). It is well-established that the perceptual benefit from

endogenous attention deployment goes along with a down-

regulation in occipito-parietal alpha-power (8–12 Hz) (e.g.

[26,27]); an effect that has also been reported for rhythmic

motion cueing paradigms engaging automatic attention processes

[11], where downregulation of parieto-occipital alpha-power is

maximally time-locked to the expected target onset (shown for

1.25 Hz- and 2.5 Hz-cueing in [25]). In contrast, alpha-frequency

stimulation may lead to an up-regulation of alpha-power

[19,33,34], e.g. by phase alignment of ongoing posterior alpha

oscillations (see our hypothesis). These two mechanisms (alpha-

downregulation by attention, alpha-upregulation by entrainment)

are likely to counteract – thus abolishing the well-established

attentional benefits from cueing paradigms. This would help to

explain why 10.6 Hz-cueing did not convey a benefit in our study,

while benefits for directly adjacent flanker frequencies outside the

alpha-band (7.1 Hz, 14.2 Hz) were evident (for an explanation

Table 2. results of experiment 2 (outliers removed), before detrending.

47 71 94 118 141 165 188 212 235 259 282

congruent 10.6 Hz mean 0.856 0.856 0.888 0.866 0.863 0.847 0.878 0.853 0.851 0.840 0.866

sem
[WS]

0.023
[0.018]

0.030
[0.014]

0.017
[0.014]

0.022
[0.013]

0.026
[0.015]

0.029
[0.014]

0.020
[0.009]

0.027
[0.011]

0.029
[0.017]

0.029
[0.017]

0.018
[0.016]

5.3 Hz mean 0.879 0.877 0.852 0.837 0.863 0.872 0.876 0.851 0.862 0.856 0.881

sem
[WS]

0.030
[0.019]

0.023
[0.011]

0.027
[0.014]

0.026
[0.012]

0.026
[0.013]

0.024
[0.014]

0.026
[0.012]

0.029
[0.016]

0.030
[0.018]

0.027
[0.010]

0.025
[0.015]

incongruent 10.6 Hz mean 0.880 0.899 0.856 0.880 0.850 0.835 0.870 0.863 0.876 0.900 0.830

sem
[WS]

0.015
[0.013]

0.019
[0.014]

0.030
[0.018]

0.024
[0.018]

0.026
[0.014]

0.025
[0.012]

0.021
[0.010]

0.024
[0.014]

0.024
[0.013]

0.018
[0.009]

0.030
[0.019]

5.3 Hz mean 0.872 0.845 0.815 0.863 0.843 0.852 0.854 0.825 0.870 0.834 0.837

sem
[WS]

0.017
[0.013]

0.030
[0.013]

0.032
[0.016]

0.023
[0.014]

0.031
[0.022]

0.023
[0.014]

0.024
[0.015]

0.033
[0.012]

0.025
[0.013]

0.026
[0.012]

0.032
[0.016]

Displayed are the average proportion correct per condition, per SOA (horizontal direction). Also shown are standard error of the mean (SEM), before and [after removal
of between-subject variability (within-subject: WS)].
doi:10.1371/journal.pone.0060035.t002

Figure 4. Behavior-MEG correlation. Scatterplot and linear
regression analysis between frequency of rhythms in visual task
performance (Experiment 2, x-axis) and MEG (recorded in a subset of
participants, y-axis). The behavioural cyclic pattern showed a significant
positive correlation with individual resting occipito-parietal alpha
frequency. This suggests that the cyclic pattern in behaviour (shown
for the group results in Figure 3) may reflect entrainment of intrinsic
brain oscillations in the alpha-band.
doi:10.1371/journal.pone.0060035.g004
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why there is no cueing benefit at 17 Hz please see below: Insights

into the mechanics of exogenous spatiotemporal attention

processes). It is only with 10.6 Hz-cueing (or its subharmonic)

that a rhythmic train should synchronize intrinsic alpha-oscilla-

tions because progressively phase-locking the oscillatory brain

activity in the course of the stimulus train (corresponding to

entrainment, [20]). Indeed, cueing at the alpha subharmonic

frequency of 5.3 Hz also yielded no cueing benefits (experiment 2),

despite strong cueing benefits at flanker frequencies (3.9/7.1 Hz,

in experiment 1). Alpha-synchronization (by the rhythmic train)

counteracting the task-relevant (attention-related) alpha-desyn-

chronization needed for conferring perceptual benefits therefore

form a parsimonious mechanistic account of our results. This

further supports our conjecture of entrainment of brain rhythms in

the alpha band. These frequency-specific effects therefore point to

a special role for alpha-oscillations in visual perception.

It is of interest to note that we have recently obtained analogous

results (to experiment 1) using rhythmic transcranial magnetic

stimulation (TMS) at 10 Hz over occipito-parietal areas to entrain

intrinsic alpha oscillations [31] (see [40] for EEG evidence of

alpha-entrainment by alpha-TMS). This TMS study also included

stimulation at (control) flanker frequencies, but eliminated

attention effects of rhythmic trains on visual performance by

sham TMS (i.e. correcting for the effects of rhythmic coil clicks,

[31]). As a result, the present experiment 1 and the previous TMS

study differ in visual performance at baseline (control flanker

frequencies), with baseline performance of the current study being

asymmetric from the start (general attentional cueing benefit at

cued vs. uncued positions, against which the effects of 10.6 Hz-

trains was assessed) versus baseline performance in the TMS study

being the same (symmetric) in both visual fields [31]. Despite this

discrepancy in baseline between the two studies, the directional

change after rhythmic stimulation was equivalent for both studies.

10 Hz-TMS lead to lower visual performance in the visual field

contralateral to TMS and an enhanced performance ipsilaterally,

i.e. TMS lead to a visual performance asymmetry [31]. In the

present study, 10.6 Hz-stimulation abolished the baseline asym-

metry. When compared to stimulation at control flanker

frequencies (data of 7.1 Hz and 14.2 Hz collapsed), 10.6 Hz

stimulation lowered discrimination rate at cued and increased this

rate at uncued locations. That is, in both cases (occipito-parietal

10 Hz-TMS and 10.6 Hz visual stimulation), rhythmic stimulation

led to a suppression of perception at cued/contralateral and

enhancement at uncued/ipsilateral position.

One view holds that visual brain oscillations may implement a

periodic sampling mechanism for perception [2,37,41,42] with

enhanced visual performance at one preferred phase of the

oscillatory cycle and reduced performance at the opposite phase.

Yet, only a few studies we are aware of have attempted directly to

entrain intrinsic alpha oscillations (reviewed in [20], see also [43] )

in order to study phase-dependence of perception over several

alpha cycles. Previous reports of perceptual benefits from rhythmic

cueing [7,10,11,25] could generally be explained by a top-down

driven cognitive anticipation process, even when cueing effects or

neural correlates thereof are recurrent (show a cyclic pattern)

[21,25] because the rhythmic cueing pattern per se generates

expectations for cyclic reoccurrence of events. In contrast, top-

down driven anticipation cannot explain the periodicity in

perception in our results (experiment 2), for two reasons. First,

after rhythmic stimulation with the alpha-subharmonic 5.3 Hz,

there was an alpha oscillation in visual task performance over time,

whereas a top-down driven cognitive anticipation process would

have yielded a 5.3 Hz pattern. Second, across participants, the

individual, peak alpha frequencies in visual task performance

correlated with peak alpha frequencies in resting state MEG. The

intrinsic alpha oscillations seem therefore to underlie the

behavioral alpha oscillations, further ruling out anticipation as a

possible explanation. Our results therefore strongly suggest that a

rhythmic train of visual cues at alpha frequency (10.6 Hz) can

reveal a rhythmic pattern in visual task performance driven by

alpha oscillation in visual areas.

Insights into the mechanics of exogenous
spatiotemporal attention processes

Previous studies implemented rhythmic cueing paradigms

similar to those we employed to study the mechanisms and

constraints of attention processes through examining cueing

benefits across experimental manipulations [7,10,11,21,25]. Al-

though the cueing benefit in the present study primarily served as a

baseline (against which effects of possible entrainment of brain

oscillations at 10.6 Hz rhythmic stimulation were assessed), we

here discuss the implication of our data also in terms of attention

research.

Our results demonstrate a broadband cueing benefit (,4–

14 Hz), which is in line with previous findings [7,10,11,21,25].

Behavioral effects to rhythmic flicker- or motion-cues consist of

enhanced perception of targets appearing at expected time-points

or positions, i.e. in temporal and/or spatial alignment with the

preceding rhythmic cues, for stimulation at 1.8 Hz [7], 2.5 Hz

[11,25], and 12.1 Hz [10,21]. In contrast to previous studies on

attention using rhythmic cueing however (e.g. [7]), we did not

manipulate predictability of targets at spatial positions, i.e. targets

were equally likely to occur at cued or uncued locations. Although

not at all spatially predictive (but fully temporally predictive), the

rhythmic trains of cues did improve visual target processing at the

cued relative to the uncued locations. We therefore interpret our

spatial cueing benefit to result from automatic exogenous

visuospatial attention mechanisms, rather than endogenous

attention control. This is in line with recent findings by Rohenkohl

et al. [11,25] who showed that the rhythm in periodic visual

stimulation likely activates automatic exogenous temporal atten-

tion mechanisms, while (here absent) symbolic information can

affect endogenous temporal attention mechanisms. Overall, our

data confirm the notion that during rhythmic cueing, temporal

expectations cooperate with visual spatial attention for optimizing

perceptual analysis at/towards cued locations [7] over a broad-

band of stimulation frequencies [10,11,21,25], and that this is

under automatic (exogenous) attention control [11].

In addition, our findings provide information on possible

dynamic limits of these attention processes. Apart from the

breakdown of benefits at alpha-rhythms, the frequency of cueing

differentially affected perception in such a way as to suggest that

automatic attention processes with dynamic limits are at play

(highest cueing benefit at lowest frequency = 3.9 Hz, decreasing

cueing benefit as frequency of stimulation increases). Towards an

upper dynamic limit, spatial and temporal attention may be

progressively less able to engage, disengage and reallocate to

present and future events of the rhythmic event sequence to finally

break off beyond this limit. Our data may indeed point towards

such an upper dynamic limit which would be at 14–17 Hz (at least

for our experimental setting with four entrainers), as indicated by

the lack of cueing effects at 17 Hz (the highest frequency we

tested). However, given our interpretation of the lack of cueing

benefits at 10.6 Hz frequency (involving counteracting attention vs

entrainment mechanisms), the question arises whether the lack of

cueing benefit at 17 Hz could not be explained similarly. Several

arguments however speak against this explanation, i.e. against the

lack of cueing benefits at 17 Hz reflecting entrainment of
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inhibitory brain rhythms competing with an attentional benefit.

Firstly, there is no evidence for a neuronal resonance response in

visual areas to 17 Hz flicker stimulation (or to nearby flicker

frequencies, see [19] for stimulation between 1–100 Hz), i.e. there

is no evidence for 17 Hz entrainment in visual areas. Secondly,

17 Hz does not correspond to the frequency of a known

(inhibitory) rhythm of the visual system, further arguing against

an entrainment account. Thirdly, in keeping with an upper

dynamic limit is the fact that with only 4 entrainers, 17 Hz-cueing

only lasts 176 ms (from entrainer 1 to 4), leaving arguably not

enough time for the attentional system to keep up with the speed of

presentation. We therefore conclude that the present result of

failed attentional cueing at 17 Hz is more likely due to the

attentional benefit breaking off at an upper limit than any other

mechanism. It does remain unclear whether this limit reflects a

fundamental (absolute) upper limit of the attention system, or

more likely, whether it depends on the number of entrainers and

the particular paradigm, as attention allocation may become more

accurate and effective when more than four entrainers are

employed (see [44]).

In future work, it would be of interest to delineate in more detail

the exact constraints of rhythmic attentional cueing benefits

through more detailed parametric manipulations, involving also

frequencies above 17 Hz.

Limitations and caveats
The most likely collective account of our data set is that

entrainment of brain rhythms in the alpha band contributed to our

results, because it can explain both alpha-specificity and alpha-

periodicity of behavioral effects (experiment 1 and 2) in light of the

link to posterior alpha oscillations (experiment 2b). Yet, although

less likely, alternative explanations should be considered.

Since the delays between cues within the trains as well as

between the last entrainer and visual target were different across

frequencies of cueing (by design), we need to consider whether the

results of experiment 1 (i.e. alpha-specificity) could have resulted

from differential forward masking effects across conditions,

differential attentional blinks associated with the rapid serial visual

presentation per frequency, or differential apparent motion effects.

First, forward masking effects (due to the last entrainer masking

the visual target) may differentially interfere with perception

depending on presentation frequency, as the cue-target delay

(mask-target SOA) does affect the strength of masking [45]. Yet,

since in the motion entrainment condition visual targets were not

in the same location as the visual entrainers (the potential masks)

and since motion entrainment did not differ from flicker

entrainment in terms of frequency effects (no interaction between

Rhythmic Cueing Type and Frequency of cueing), forward

masking seems unlikely to explain our results. Second, the

attentional blink may differentially affect perception across

presentation frequencies because it also depends on SOA [46].

Yet, such an explanation would be difficult to reconcile with the

pattern of cueing effects we observe across frequencies; in

particular with the absence of benefits at two (5.3 Hz and

10.6 Hz) frequencies, but the intermediate frequency (i.e. 7.1 Hz)

being unaffected. Third and in analogy to the above, although

apparent motion depends on stimulation frequency [47], our

pattern of findings with breakdowns of cueing at 5.3 Hz and

10.6 Hz but not at 7.1 Hz seems difficult to explain in this context.

We therefore conclude that our findings are best interpreted in

terms of entrained alpha-oscillations.

A limitation of our experiments is that we did not record MEG

simultaneously with task performance. This means that we cannot

directly relate the fluctuations in behavioural performance to brain

oscillations, although we would expect perception and underlying

alpha-oscillations to fluctuate in counter-phase at the time when

the corresponding visual input signal reached the visual areas,

because perception should peak at troughs of the underlying alpha

oscillation [39]. In addition, this means that the postulated

mechanism of alpha phase alignment explaining our results,

although parsimonious and in line with previous work (see above

and Introduction), is supported by our data only indirectly. A

recent study by Mathewson et al. [21] however provides empirical

support for this postulation. These authors measured electroen-

cephalography (EEG) while rhythmic trains of visual stimuli

preceded a visual target. Behaviorally, targets in phase with

rhythmic trains were detected more often than targets out of

phase. The EEG showed phase-alignment of alpha oscillations to

the rhythmic train, and this increase in phase-locking predicted the

increase in target discrimination when targets were in phase.

These results demonstrate that rhythmic stimulation at alpha

frequency could indeed align alpha oscillations which might be

functionally relevant for visual performance [10,14,21,37],

supporting the interpretation of our findings here. In contrast to

our findings, individual peak alpha frequencies (in resting state

EEG) did not correlate to any of the behavioral measures in

Mathewson et al. [21]. Also, the experimental design and

behavioral analysis did not allow a direct evaluation of whether

behavior oscillated at alpha frequency, and whether entrainment

effects are frequency- and location-specific. Our results and those

described in Mathewson et al. [21] are therefore highly

complementary. Taken together, they strongly support the

hypothesis that rhythmic visual stimulation phase-aligns intrinsic

alpha oscillations that are directly relevant for successful visual

perception.

Alpha phase alignment by non-retinotopic mechanisms
of entrainment?

One last aspect of our results that affords further consideration

involves the spatial configuration of our stimuli in the flicker versus

motion entrainment condition. The entrainers of the flicker

condition are all positioned in the same visual field location. This is

not the case for the motion condition, yet the results in these two

conditions are not different (experiment 1). Despite the entrainers

of the motion condition moving across visual field positions, the

cueing benefit breaks down at 10.6 Hz independently of cueing

type (flicker versus motion). This may indicate that entrainment of

alpha-oscillations extends to non-retinotopic mechanisms. Indeed,

attention research showed that alpha oscillations are not only up-

or down-regulated by spatial attention in a retinotopically specific

manner (as shown in [24,28]) but also in areas of the ventral versus

dorsal stream as a function of attention to ventral-stream versus

dorsal-stream visual features (colour versus motion) [48]. This

indicates that perceptually relevant alpha-oscillations are not

restricted to retinotopic early visual cortex, but extend to higher-

order visual areas. Accordingly, it is conceivable that these

oscillations may also be entrained by appropriate frequency

tagging of the relevant visual feature (i.e. presentation of apparent

motion stimuli at alpha frequency for entrainment of alpha-

oscillations in motion areas).

Finally, our result of cyclic patterns in perception that are locked

to visual cues (experiment 2) is reminiscent of a recent finding by

Landau and Fries [6]. Landau and Fries [6] showed that one single

visual event in one hemifield can lead to phase-locked oscillations

in visual performance in that hemifield, with visual performance in

the opposite hemifield cycling in anti-phase. These results were

interpreted to reflect rhythms of covert exploration (attentional

scanning) after phase-locking of attention to the time point and

Alpha Oscillation in Behavior

PLOS ONE | www.plosone.org 10 March 2013 | Volume 8 | Issue 3 | e60035



visual position of the visual event. Our results are difficult to

interpret in this context because they were obtained in a different

frequency band, using a different paradigm and a lower temporal

sampling rate of visual task performance. The phase-locking in our

experiment may therefore not reflect correlates of attentional

scanning (covert exploration behavior), but rather be best

explained by phase-reset of oscillations generated in visual areas.

This interpretation is supported by our finding that the cycles in

visual task performance related to the individual alpha frequencies

obtained from MEG.

Conclusions
Our results demonstrate alpha-specificity and alpha-periodicity

of behavioural effects to rhythmic cueing paradigms, correlating

with brain oscillations as measured by MEG. They reveal the

functional relevance of intrinsic alpha-oscillations in successful

visual perception, and demonstrate that these oscillations can be

controlled (and thus studied) by rhythmic visual stimulation at

intrinsic frequencies.
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