921 research outputs found
Random wave loads on a long detached breakwater considering diffraction
Battjes (1982) found the loads of short-crested random waves on a long structure decrease with the structure length and also with the obliqueness of wave incidence. These decreases come from the spatial phase difference along the structure. Lee et al. (2010) found that obliquely incident random waves in a nearshore area become directionally asymmetric due to refraction. They also found the asymmetry becomes more significant in shallower waters. Recently, Jung et al. (2011) studied random wave loads on a long structure considering diffraction and directional asymmetry. In this study, we further study random wave loads on a detached breakwater considering diffraction of waves which propagate at both ends of the breakwater. We also consider directional asymmetry. The structure may be placed along the bottom contours in order to protect on-shore incoming waves. In that case, refraction induced random waves may become asymmetric, i.e., on-shore components are more dominant than along-shore ones. Therefore, directional obliqueness on the structure becomes less and thus the wave loads decrease in less degree than the symmetric waves. When waves are obliquely incident on a long structure, the diffract ing waves give forces on the lee side of the structure. The diffracting wave has a spatial phase variation along the lee side which is different from that the obliquely incident wave has on the front side. Thus, the wave loads decrease with the existence of diffract ing waves and also the phase difference between the incident and diffracting waves
Comparison of computed tomographic findings in pulmonary mucormycosis and invasive pulmonary aspergillosis
AbstractBecause there are no available molecular markers for pulmonary mucormycosis (PM), which has low culture sensitivity, early diagnosis and treatment rely heavily on imaging modes such as computed tomography (CT). However, there are limited data comparing CT findings for PM with those for invasive pulmonary aspergillosis (IPA). Adult patients who met the modified criteria for proven and probable PM (over an 11-year period) and IPA (over a 6-year period, owing to the availability of the galactomannan assay) according to the modified European Organization for Research and Treatment of Cancer/Mycosis Study Group definitions were retrospectively enrolled. IPA cases were selected at a 1 : 4 (PM/IPA) ratio. Thoracic CT scans were reviewed by two experienced radiologists blinded to the patients' demographics and clinical outcomes. A total of 24 patients with PM, including 20 (83%) with proven PM and four (17%) with probable PM, and 96 patients with IPA, including 12 (13%) with proven IPA and 84 (87%) with probable IPA, were eventually analysed. The reverse halo sign was more common in patients with PM (54%) than in those with IPA (6%, p < 0.001), whereas some airway-invasive features, such as clusters of centrilobular nodules, peribronchial consolidations, and bronchial wall thickening, were more common in patients with IPA (IPA 52% vs. PM 29%, p 0.04; IPA 49% vs. PM 21%, p 0.01; IPA 34% vs. PM 4%, p 0.003, respectively). The reverse halo sign was more common, and airway-invasive features were less common, in patients with PM than in those with IPA. These findings may help physicians to initiate Zygomycetes-active antifungal treatment earlier
Microscopic origins of the surface exciton photoluminescence in ZnO nanostructures
Photoluminescence (PL) studies of the surface exciton peak in ZnO nanostructures at ∼3.367 eV are reported to elucidate the nature and origin of the emission and its relationship to nanostructure morphology. Localised voltage application in high vacuum and different gas atmospheres show a consistent PL variation (and recovery), allowing an association of the PL to a bound excitonic transition at the ZnO surface modified by an adsorbate. Studies of samples treated by plasma and of samples exposed to UV light under high vacuum conditions show no consistent effects on the surface exciton peak indicating no involvement of oxygen species. X-ray photoelectron spectroscopy data indicate involvement of adsorbed OH species. The relationship of the surface exciton peak to
the nanostructure morphology is discussed in light of x-ray diffraction, scanning and transmission electron microscopy data
Soliton ratchets induced by ac forces with harmonic mixing
The ratchet dynamics of a kink (topological soliton) of a dissipative
sine-Gordon equation in the presence of ac forces with harmonic mixing (at
least bi-harmonic) of zero mean is studied. The dependence of the kink mean
velocity on system parameters is investigated numerically and the results are
compared with a perturbation analysis based on a point particle representation
of the soliton. We find that first order perturbative calculations lead to
incomplete descriptions, due to the important role played by the soliton-phonon
interaction in establishing the phenomenon. The role played by the temporal
symmetry of the system in establishing soliton ratchets is also emphasized. In
particular, we show the existence of an asymmetric internal mode on the kink
profile which couples to the kink translational mode through the damping in the
system. Effective soliton transport is achieved when the internal mode and the
external force get phase locked. We find that for kinks driven by bi-harmonic
drivers consisting of the superposition of a fundamental driver with its first
odd harmonic, the transport arises only due to this {\it internal mode}
mechanism, while for bi-harmonic drivers with even harmonic superposition, also
a point-particle contribution to the drift velocity is present. The phenomenon
is robust enough to survive the presence of thermal noise in the system and can
lead to several interesting physical applications.Comment: 9 pages, 13 figure
Quasinormal modes from potentials surrounding the charged dilaton black hole
We clarify the purely imaginary quasinormal frequencies of a massless scalar
perturbation on the 3D charged-dilaton black holes. This case is quite
interesting because the potential-step appears outside the event horizon
similar to the case of the electromagnetic perturbations on the large
Schwarzschild-AdS black holes. It turns out that the potential-step type
provides the purely imaginary quasinormal frequencies, while the
potential-barrier type gives the complex quasinormal modes.Comment: 19 pages, 8 figure
Recommended from our members
Momentum dependent dxz/yz band splitting in LaFeAsO
The nematic phase in iron based superconductors (IBSs) has attracted attention with a notion that it may provide important clue to the superconductivity. A series of angle-resolved photoemission spectroscopy (ARPES) studies were performed to understand the origin of the nematic phase. However, there is lack of ARPES study on LaFeAsO nematic phase. Here, we report the results of ARPES studies of the nematic phase in LaFeAsO. Degeneracy breaking between the dxz and dyz hole bands near the Γ and M point is observed in the nematic phase. Different temperature dependent band splitting behaviors are observed at the Γ and M points. The energy of the band splitting near the M point decreases as the temperature decreases while it has little temperature dependence near the Γ point. The nematic nature of the band shift near the M point is confirmed through a detwin experiment using a piezo device. Since a momentum dependent splitting behavior has been observed in other iron based superconductors, our observation confirms that the behavior is a universal one among iron based superconductors
Global Search for New Physics with 2.0/fb at CDF
Data collected in Run II of the Fermilab Tevatron are searched for
indications of new electroweak-scale physics. Rather than focusing on
particular new physics scenarios, CDF data are analyzed for discrepancies with
the standard model prediction. A model-independent approach (Vista) considers
gross features of the data, and is sensitive to new large cross-section
physics. Further sensitivity to new physics is provided by two additional
algorithms: a Bump Hunter searches invariant mass distributions for "bumps"
that could indicate resonant production of new particles; and the Sleuth
procedure scans for data excesses at large summed transverse momentum. This
combined global search for new physics in 2.0/fb of ppbar collisions at
sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D
Rapid Communication
Observation of Orbitally Excited B_s Mesons
We report the first observation of two narrow resonances consistent with
states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar
collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the
Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed
as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+,
\bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1})
= 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
- …