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Soliton ratchetlike dynamics by ac forces with harmonic mixing

Mario Salernd and Yaroslav Zolotaryufk
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I-84081 Baronissi, Salerno, Italy
2Section of Mathematical Physics, IMM, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
(Received 16 October 2001; published 29 April 2D02

The possibility of unidirectional motion of a kinftopological soliton of a dissipative sine-Gordon equation
in the presence of ac forces with harmonic mixitag least biharmonijcand of zero mean, is presented. The
dependence of the kink mean velocity on system parameters is investigated numerically and the results are
compared with a perturbation analysis based on a point-particle representation of the soliton. We find that first
order perturbative calculations lead to incomplete descriptions, due to the important role played by the soliton-
phonon interaction in establishing the phenomenon. The role played by the temporal symmetry of the system
in establishing soliton dc motions that resemble usual soliton ratchets, is also emphasized. In particular, we
show the existence of an asymmetric internal mode on the kink profile that couples to the kink translational
mode through the damping in the system. Effective soliton transport is achieved when the internal mode and
the external force get phase locked. We find that for kinks driven by biharmonic drivers consisting of the
superposition of a fundamental driver with its first odd harmonic, the transport arises only dueitbetimal
modemechanism, while for biharmonic drivers with even harmonic superposition, also a point-particle con-
tribution to the drift velocity is present. The phenomenon is robust enough to survive the presence of thermal
noise in the system and can lead to several interesting physical applications.

DOI: 10.1103/PhysReVvE.65.056603 PACS nun)er05.45.Yv, 05.60.Cd, 05.45.Ac

[. INTRODUCTION of an asymmetric internal mode which couples, through the
damping in the system, to the soliton translational mode.
Transport phenomena based on nonlinear effects are at tlgfective transport was found when the internal mode and
heart of many problems in physi€$]. In this context it was the external force were phase locked. Moreover, it was
generally believed that an ac force of zero mean cannot leashown that the effect of soliton transport decreases with in-
to directed nonzero currents. Recent studies of the so callectease of the damping, the maximal transport being achieved
ratchet effecthave shown that this belief was wrofg]. A in the underdamped regime.
ratchet system can be described as a Brownian particle in an On the other hand, it is known that for ordinary differen-
asymmetric periodic potential, moving in a specific directiontial equation(ODE) systems, unidirectional transport is pos-
in presence of damping, under the action of ac forces of zersible also in symmetric potentials if suitable asymmetric
average. The origin of a net motion is associated to thdorces of zero average are applied. We remark that, although
breaking of the space-temporal symmetries of the systerthe term ratchet is usually used in connection with asymmet-
[3,4], leading to the desymmetrization of e flights (for  ric potentials, one can adopt a more general definition by
Hamiltonian systems[5], and to phase locking phenomena viewing the ratchet as the result of the breakage of the spa-
between the particle motion and the external driving forcetiotemporal symmetry of the system that relates orbits with
[6,7]. opposite velocitiegthus producing net motion independent
This effect has a number of applications in variouson initial conditions. This can be achieved either by deform-
branches of physics and biology and is believed to be théng the potential and using zero average symmetric forces, or
basic mechanism for the functioning of biological motorsby applying proper asymmetric forces with zero averages to
(see reviewg?2], and references thergiriThe ratchet effect, systems with symmetric potentials. In the present paper we
originally studied for Brownian particles, was generalized toshall adopt this more gener@ymmetry baseddefinition of
dynamical system$8] and to partial differential equations the ratchet phenomenda5).
(PDE) of soliton-type, mainly in the overdamped regiif®s, Since in concrete applications it is more easy to act on the
or with asymmetric potentialgl0—-14. In the overdamped temporal partby using external forceshan on the spatial
case, the damping in the system suppress all the degrees irt (by inducing potential distortionsf a system, it is in-
freedom associated with the background radiation so thaeresting to explore transport phenomena induced by asym-
soliton ratchets become very similar to point-particle ratch-metric forces also in the case of soliton systems.
ets. For underdamped or moderately damped systems, how- The present paper is just devoted to this problem. More
ever, the situation is quite different since the radiation fieldprecisely, we show that topological solitons of nonlinear
can interact with the soliton and influence the transport. UnPDEs with symmetric potentials can acquire finite drift ve-
derdamped soliton ratchets in asymmetric potentials antbcities in the presence of biharmonic forces of zero average
driven by sinusoidal forces, were recently investigated inconsisting of the superposition of two harmonics, the funda-
Refs.[13,14. In particular, in Ref[13] the basic mechanism mental and one of its overtongsarmonic mixing drivers
underlying the phenomenon was identified in the existenc8iharmonic forces were used in the literature to suppress
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chaos in dynamical systems and in soliton equat/d6$ as  presence of a white noise term in the system. We find that the
well as, to control the transport properties of single particlesoliton ratchets are robust enough to overcome the presence
ratchets[7]. In the present paper we demonstrate, on thef small amplitude noises, thus making them of interest for
particular example of the sine-Gordon system, that biharpractical applications. In Sec. IV the interaction of soliton
monic driving forces with certain symmetries can be effec-ratchets with system boundaries is considered, while in Sec.
tive to create soliton ratchets. The role played by the symV we summarize the main result of the paper and discuss
metry of the force in establishing the phenomenon isPossible applications of the phenomenon.

discussed. In contrast with previous studies, we find that the

direction of the net soliton motion is totally controlled by the [l. MODEL ANALYSIS
symmetry of the force and is independent from initial condi- Direct soliton motion induced by ac signals have been
tions.

The phenomenon is investigated both numerically, by di_|nvest|gated in the literature mainly for ac forces with single-

; . ) ) . .~ harmonic contenf18]. As well known, for symmetric field
rect simulations, and analytically, using soliton perturbation

. . . otentials this situation does not lead to soliton ratchet dy-
theory. We show that a first order perturbation analysis of thé;amics. To this regard we remark that the dc motion ob-

Sﬁgtggn?gggrulz:a%?gtu;is %nolil thueagtt:g 532\/: fr%if%rgrsltgfvt/?t%erved for a sine-Gordon kink driven by single-harmonic
2umerical reéults Thge reaF;on 0(:1]‘ this discre zgnc is ascribe(grces in absence of dampiig9), and its generalization to
' pancy the case of small dampin@0], as well as, dc motion ob-

to thg sohto'n-phonon'|n'ter'act|.on that is obviously missing Ntained from spatially inhomogeneous drivE24], should not
a point-particle descriptiofit arises only at the second order be confused with soliton ratchets. In these cases, indeed, the

) tlrr]legzigtrj;?ftir?g r]sitelj(;t?grws Igg:]z).e described as follows Be(—jC motion strongly depends on the initial conditions and
sides a point-particle contribution to the drift velocity there isqUICkIy disappears as the damping in the system is increased.

X - . . On the contrary, soliton ratchets do not depend on initial
an equally important contribution coming from the soliton-

honon interaction. This last manifests itself with the a eargonditions and exist also for relatively higher damping. We
P . : i . 1€ apPean.. ark that net soliton motion independent on initial condi-
ance of an internal oscillation on the soliton profile, asym-

tions, can be induced by the mixing of an additive and a

metric in space, which induces a net motion in a similar o A .
manner as zescribed in R¢L3]. In particular, we show that parametrigsingle harmonigdriver as shown in Ref22] for
: ’ solitons of the¢* model.

this oscillation can be phase locked to the external driving In thi : hall i . i hetlike d
force and can couple to the kink translational mode, through n this section we shall investigate soliton ratchetiike dy-
T » ” namics in symmetric potentials driven by periodic bihar-

the damping in the system. The energy, “pumped,” by the ac_"_ . .
A . . monic forces of zero mean. As a working model we take the
field into the internal mode is then converted by the abov%OIIOWin erturbed sine-Gordon equation:
mechanism into net motion of the kink. Internal oscillations gp q '
on antikink profiles have opposite asymmetry compared to
kinks, so that kink and antikink ratchets give rise to motion
in opposite directions. with « denoting the damping coefficienn(x,t) a white

The dependence of t_he phenomenon on system parafpise term with autocorrelation
eters such as the damping in the system, frequency, ampli-
tudes, relative phase of the biharmonic driving force, as well (n(x,H)n(x’,t"))=Ds(x—x")8(t—t"), 2)
as, on the presence of white noise in the system, is investi-
gated by means of direct numerical integrations of the sineandE(t) a driver of the form
Gordon equation. The interaction of soliton ratchets with the
boundaries of a finite system is also investigated. For reflect- E(t)=E; coswt+ E, cogmwt+ 6), 3
ing edges we find that, depending on the initial velocity and
position of the kink, the ratchet dynamics can be either defthe casee,+ 0 is referred to abiharmonic driverwith even
stroyed or reflected as an antikink ratchet moving in the opor odd harmonic mixing, depending am being even or
posite direction. These results could be important for appliodd. Note that although the symmetry properties of this
cations to physical systems such as long Josephson junctiorgfjver are reduced iE,#0 and §+0 mod =, the force is
as we briefly discuss at the end of the paper. periodic, with periodT=2n/w, and has zero meafthe

The paper is organized as follows. In Sec. Il we investi-analysis can be generalized to more harmonic components
gate the dynamics of the perturbed sine-Gordon equation, @nd to arbitrary nonsinusoidal periodic forgeghe unper-
a model for soliton ratchets in the presence of asymmetriturbed version of Eq(1) [the perturbation beingf(t)=
forcing and damping, both in terms of symmetry arguments— E(t) — auy(x,t)] is the well known sine-Gordon equation
and first order perturbation theory. In Sec. Il we study soli-with exact soliton(kinks, antikinkg solutions that depend on
ton ratchets by direct numerical integrations of the perturbec free parameter, the velocityof the kink, which lies in the
sine-Gordon system and provide a consistent interpretatiorange—1<v<1.
of the phenomenon. Qualitative and quantitative features of It is of interest to investigate the conditions under which a
soliton ratchets are compared with the predictions of the firsbiharmonic driver of typg3) can induce soliton ratchets in
order perturbation analysis. The phenomenon is investigatellg. (1). To this end we remark that due to the translational
in the deterministic casg.e., in absence of noig@nd in the invariance of the sine-Gordon systéme assume an infinite

Uit — Uy, +Sinu= — au;— E(t) +n(x,t), @
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system or a finite one with periodic boundary conditions

have that to each soliton trajectory with velocitgthere is a gr = —eP+27EQ), (10
specular trajectory with the velocity v. One can expect

that, in analogy with single particle ratch¢t], only forces  or equivalently

which break thev— —v symmetry should induce net mo-

tion. This argument can be formalized in terms of the kink . 1
velocity ’ v=—7(1-v?)[—7V1-0v%E(t) + 4av], (11)
4
D= — quxtdx, (4) wh_erev(t)zX(t) and we assumed the usual_relativistic re-
27 ) o lation P(t)=8v(t)/\1—v(t)? between velocity and mo-

mentum to be valid for all times. Equatiofi0) can be

as follows (note that one could use the momentum of theeagily solved forP(t), from which the kink velocity can be
kink as well, instead of the velocityAmong the possible ptained as

shifts and reflections if,x, andu, we identify the symmetry

operations that change the signwokeeping the sign of the P(t)
topological charge V= ——. (12
P2(1)
1 + o 8 1+ 64
Q-5 wax ®

From this equation an analytical expression of the average
unchangedthis means that we avoid kink antikink transfor- kink velocity

mations. It is easy to check that there is only one symmetry

transformation that changes the sign of kink velocity and oo (T gt 2w
leaves the equation of motion unchanged, i.e., (v)= o o v(tHdt', T= o (13
X——X+Xo, tot+ I Ues —U+27r. (6) valid in the limit E; INa?+ (jw)?<1, j=1,2(i.e., small mo-
2 mentums or small drift velociti¢scan be obtained for the

. - , L _ case ofm=2, by expanding the square root in E§2) in
This holds true for driving fields satisfying the following ggries thus giving

condition:

(7) 3 EiEz ’773

E(t+T/2)=—E(1). <”:§ﬁ@f+w%¢?11?gma_%L

(14)

We remark that the above symmetry argument accounts only

for the breakage of the— —uv point-particle symmetry of a(a®+30?)
the soliton, ignoring possible contributions coming from the fo=arctan —_————
soliton-phonon interactiof23]. From Eg.(3) we see that 20

condition(7) is always satisfied for drivers with odd mixing
while it is always broken for drivers wittm even(obviously
we takeE,# 0). Thus, thev— —v symmetry predicts that a
sine-Gordon soliton should exhibit a ratchet dynamics whe
driven by am=2 force[one needs to break the symmetry

to get the drift motiof, but not when driven by an=3  ©f an arbitrary initial phase
forge. i y These results can be easily understood from the effects of

To the same conclusion one can arrive also from firsth€ SYmmetry properties of the force on the dynamics. In Fig.
1 the forceE(t), viewed as a sequence of alternating pulses
satz for the kink profile of equal intensitiegi.e., with the same area under the cyrve
and indicated by dark and light fillings in the figure, is re-
X—=X(1) ) .
u(x,t)=4arctan ex (8) pulses perfectly balance so that no net motion can arise,
while for m=2 there is not such a balan¢& both cases,
An ODE for kink's center of mas¥(t), can be readily ob- In Fig. 2 we report the dynamics obtained from numerical
tained by differentiating the momentu(eee Refs[19,24), integrations of Eq(11) for the casen=2. We also show the
[T composing the force, from which we see that although these
v, vidX, (9) . i ;
—w pulses have equal intensities, the answer of the system is
with respect to time, and using E¢l) and ansata8) to  is more effective than the positive one to produce motion as
simplify the expression. This leads to one can see from the fact that the area under the negative

From this expression we see that the dependenge Jobn
the relative phase is perfectly sinusoidal. Similar calculations
for them=3 case show that the average kink velocity is zero
independently on the value of the relative phagas well as

order perturbation theory, taking as collective coordinate an-=
ported for the casemn=2,3. We see that fom=3 these
V1-X3(t)
however, the average of the force is zero
response of the system to the single dark and light pulses
quite different in the two cases. Note that the negative pulse

056603-3
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0 25 50 0 200 400

t t
FIG. 1. Profiles of the biharmonic driver fon=2 (continuous FIG. 3. Trajectories of the kink center of mass derived from Eq.

line) and m=3 (dashed ling for parameter valueg,;=0.4, E,  (11) for the casesm=2 (continuous curveand m=3 (dashed
=0.26, w=0.25, §=0. For a better comparison, a time shift of curve. The other parameters are=0.25, «=0.1, E;=0.4, E,
4.548 and of—2m was, respectively, applied tm=2 andm=3 =0.26, andd=1.61.
cases.

=0.8. This is shown in Fig. 4 where the dependence of the

trajectory is greater than the one generated by the positiv@verage velocity org, as computed from Eq(11), is re-
pulse. This is obviously a consequence of the nonlinearity oported with dots, while the continuous line represents the
the systen(in a linear system the area under the two curvetPOve approximating function. Note that, although the sinu-
would just be the sameFor the particular example of Fig. 2 Soidal dependence is in perfect agreement with the approxi-
(i.e., #=0) one then expects that a net motion in the negativénate result in Eq(14), the explicit values ofA, 6, differ
direction will exist. This is indeed what one finds from inte- from those predicted by Eq14), these being, respectively,
grations of the perturbation EL1) with #=0 [see Fig.(4) A=0.12, 6,=0.56(this is due to the fact that, for the chosen

below]. set of parameters, the approximation of small drift velocities
In Fig. 3 the motion of the kink center of mass, ob- i notvalid. _ o
tained from numerical simulations of E¢L1) for the cases The ratchetlike soliton dynamics discussed above shows

m=2,3, is also reported. We see that while a well definedsimilarities with drift phenomena observed in other point-
drift velocity in them=2 case arises, no dc motion is presentParticle systems. In particular, we mention the unidirectional

in them=3 case, this being in agreement with our symmetrymotion observed for a free particle moving in a non-
analysis. Newtonian liquid with nonlinear damping under the influ-

We also find that the average velocity in HG3), com-  €nce of an additive biharmonic driy@5], and the nonzero
puted after the system reached the steady state regime, d#:2g velocity observed for a point-particle moving on a sinu-
pends on the relative phagewith a low value that is well soidal washboard potential in the overdamped regime, in the

approximated by(v)=A sin(6—6p), with A=0.058 andg, Presence of the same ac drive with harmonic mixi2g]. In
this last case, a dependence of the particle speed on the phase

angle of the same type as in Ed4) with a phase shift,

0.08 1
0.04 \
0

-0.04

<v>

0 25 50 75 -0.08 |
t -7 0 n
0

FIG. 2. Time dependence of the velocitft) of the kink center
of mass(thick dashed curye The continuous line denotes the force FIG. 4. Average velocityv) of the kink center of mass vs the
profile, while the dot-dashed and dashed curves represent thelative phased for the same parameters as in Fig. 3. The con-
response to the single dark and light pulses, respectively. The painuous curve refers to the approximating functiofv)
rameters are the same as in Fig. 1 witk-2 anda=0.15. =0.058sinf—0.8).
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=/2, was predicted. We remark that the crossover from a 4000 e

sine to cosine dependence of the velocity on the phase angle, s (@)

occurring at high damping, can be understood in terms of the 000l P

occurrence of a different symmetry conditiprather than = pa

Eq. (7)] that the force should violate in order to provide net et

motion (see Refs[4,27] for more details This is also found 2000 .,w*“"ﬂﬂ

in agreement with Eqg14), which show that in the limiting s e

casesfy—0 asa—0 andfy— 7/2 asa—x [28]. 1000 i
We also note that from Edq14) the point-particle contri- s

bution to the drift velocity is expected to be cubic in the gg"“’ 10 5o %0

driver amplitudes, thus implying that there could be equally x

important contributions to the soliton velocity at higher or-

ders of the perturbation expansion. In particular, the interac-

tion of the soliton with the phonons in the system, first ap-

pearing at second orddri7], should not be overlooked. -

Although the development of a theory that includes second

order effects is quite challenging, it is out of the purposes of 2000

the present papgwork in this direction is in progregsin

the following section will shall instead resort to numerical 1000

simulations of Eq(1) for a full investigation of the problem

and for a comparison with the results of the present section.

4000,

« S5

50

-

150 200

I1l. NUMERICAL STUDIES
FIG. 5. Contour plots of the velocity fieldi(x,t) with «

To numerically investigate sine-Gordon soliton ratchets=0.12, w=0.25, #=1.61, in the case&)E;=0.4, E,=0.26 and
driven by biharmonic fields, we have used standard finiteb)E;=0.66, E;=0.
difference schemes to reduce Eij) into a set of ODE that

were then integrated in time with a fourth order Runge-Kuttahehavior is similar to the one reported in Riif3] for soliton

method. To understand the basic mechanism underlying thjtchets in asymmetric potentials, and suggests a possible

phenomenon we shall first concentrate on the deterministisommon mechanism of the phenomen@ee below. We

case by puttingi(x,t) =0 in Eq. (1), and then show that the galso remark that the interruptions of the curvestoffs at

results obtained in this case will survive in the presence omall « values are due to the disappearance of the kink as a

noise. _ _ o consequence of the onset of spatiotemporal chaos in the sys-
In Fig. 5 the dynamics of a sine-Gordon kink, initially at tem (the cutoffs delimit the borders of the existence diagram

rest, driven by a biharmonic driver witm=2 and by a  of the kinks.

single-harmonic driveri.e., E;=0), are reported in Figs.  panel(a) of Fig. 7 shows the dependence(of on « for

5(a) and 3b), respectively(note that we use contour plots to different values of the driving frequency. Note that the ve-

show the time evolution surface generated by the kink protocity is influenced by resonances with the plasma frequency

file). _ _ ~and its harmonics, as one can see from the nonmonotonous
From these figures we see that, in the aase?2 the soli-

ton center of mass move with a constant drift velogitpte
that the shape of the kink during the motion is highly dis-
torted, while for the single-harmonic driver, it oscillates
around the initial positioriperiodic boundary conditions are
used in the simulation This demonstrates the importance of 600¢
biharmonic drivers in establishing soliton ratchets.

In Fig. 6 we report the dynamics of an antikink ratchet,
for the same parameters values as in Fig. 5. We see that, in 400¢
analogy with soliton ratchets in spatially asymmetric poten-
tials [9,10,13, antikink ratchets move opposite to kinks, the
absolute value of the drift velocity being the same. 200¢

To check the point-particle perturbation analysis of the
preceding section, we have studied the dependence of kink’s
average velocity on system parameters for the case of a bi-
harmonic driver withm=2.

In Fig. 7 we repor{v) as a function ofe for different
values of system parameters. Note that the curves display
similar behaviors, with a resonance peak in the underdamped FIG. 6. Contour plot of the velocity field,(x,t) of the antikink
regime and a quick decay to zero at higher damping. Thignotion. System parameters are as for Fi@) 5

800

056603-5



MARIO SALERNO AND YAROSLAV ZOLOTARYUK PHYSICAL REVIEW E 65 056603

perturbation analysis of the preceding section. We see that

0.2r the agreement, although qualitatively reasonable, is not so
0.15 good from a quantitative point of view.
In panel (b) of Fig. 7 the dependence di)) on « is
A 0.1 reported for different driver amplitudedor simplicity we
% have variedg;, fixing the ratioE,/E;=0.65). We observe a
0.05 ; situation similar to the one shown in Fig(@J. By increasing
00 - A the driver amplitude the system reaches the chaotic regime

and cutoff values inx quickly appear. The resonant peak in
o this case is quite weak and visible only for some narrow
range of driving amplitudes. Also here the predictions of the
point-particle perturbation theory are quantitatively quite
poor. In the panelc) of Fig. 7 we have shown the depen-
dence(v)(«) for different values of the relative phageWe

see that by changing one can change a maximum of the
curve at a given value af, into a minimum. This is a con-
sequence of the sinusoidal dependence of the average veloc-
ity on 6 predicted by Eq(14). To show this, we have re-
ported in the inset of the figure) vs 6 for a fixed value of

a, as computed from direct numerical integrations of the
sine-Gordon system. We see that the numerical points are
well fitted by a sinusoidal law as expected from the first
order perturbation result of the preceding section. We remark
that a similar sinusoidal dependence was also found in Refs.
[4,26] for single ODE particle system, this confirming the
existence of a point-particle contribution to the effect. We
also note that the dependence of the soliton velocitywon
investigated in Fig. 7, displays ad dependence in the
intermediate regiomr<<1 (but o not too small and deviates
from it at high value ofe where the decay seems to be more
o exponential-like[28] (in the overdamped limit drift veloci-
ties are difficult to measure since due to their smallness they

FIG. 7. The averaged kink velocity as a function of damping

constante with E,/E;=0.65 for different system parameters. reqlll::”: lOenrgmceonrg;ust?tlgtr'];!]gT}ESh'ch the relative ohase be-
Panel (8): E;=0.4, 6=1.61; ©=0.11 ), w=0.25 (0), Xper Ituations in whl Ve p

~0.35 (@), and w=0.65 (O). Panel(b): ®=0.35, §=1.61; E, tween the two drivgrs is not accgssible, one shOL_JId consider
=05 (*), E;=0.4 (®), E,;=0.38 (), E;=0.3 (), E;=0.2 6 as a random variable, and gfmal average on it sh_ould be
(+), andE;=0.1 (O). Panel(c): @=0.25, E;=0.4: 9=0 (O),  taken.The above results then imply that no drift velocity can
9=0.8 (0), =12 (J), and == (*). The dashed lines show €Xist in these casesoliton ratchets can be induced only if
results obtained from the numerical solution of E4l) for »  the relative phasé remains constant in time
=0.11 andw=0.25 in(a), for E;=0.4 in (b), and forg=0 in (c). It is also interesting to note from Fig.(d that reversal
The inset shows the dependence of the average velocity on tHeurrents can be induced by changing the relative phase. In
“delay angle” # for «=0.15 and the rest of parameters as in Fig. Fig. 8 we show how the curvé= = of Fig. 7(c), (which
7(c). The dashed curve in the inset shows the fitting cuse text ~ displays current reversal at low dampinghanges as the
for details. driving amplitude is increased. We see that by increasing the
amplitude of the driver the kink velocity is increased, this
behavior of the cutoffs at smalt (the cutoff velocities in  leading to an upwards shift of the curve. This means that
this case have their largest values closewts 0.5 and o current reversal observed for some valuefotan be re-
=1). moved by properly adjusting the driving amplitu@end vice
Another interesting property emerging from this figure isversa. Note that a further increase of the amplitude can
that the kink velocity is enhanced at low frequencies, and thehange the shape of the curve destroying the resonantlike
average velocity decreases by increasing the frequéaley character.
ready for frequencies abovwe=1 directed motion is hardly In Fig. 9 we report the dependence of the average velocity
visible). This is a consequence of the kink inertia to react toon the driver amplitudeE; with the ratioE,/E; fixed to
fast oscillations. On the contrary drift velocities are observ-0.65, and with the relative phase between the two drivers
able also at quite small values af (at these values, how- =1.61. From this figure it is clear that the kink drift velocity
ever, the dynamics becomes complicated and requires londepends nonlinearly on the driver amplituéle, with an al-
computational times—we checked explicitly the case most cubic low as one can see from the log-log plot in the
=0.01 for which an average drift is still visibleThe dashed inset. This result is in good qualitative agreement with our
lines in the figure represent the results of the point-particleperturbation analysiénote that theE5E, dependence in Eq.
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o FIG. 10. Contour plot of the velocity field,(x,t) for a sine-

FIG. 8. Dependence of the averaged velocity on damping Gordon kink driven b)_/ a biharmonic force with=3. System pa-
for parameters as in Fig.(@ but with different amplitudesg,  rameters are as for Fig(& excepta=0.15 andf=.

=0.4 (*), E;=0.45 (O), andE;=0.5 (¢ ). The ratioE,/E; has . . L . .
been kept constanE, /E; =0.65. phase we can achieve soliton moving in the opposite direc-
tion with the same velocity, thus by averaging on the initial
phase one gets a zero mean velocity for the Ksikulations
of the kink dynamics with different initial phases in the in-
that the casan—0.11 denoted by * in Fig. 9. indicates a terval[0,T] show that roughly half of that interval of initial
deviation from thié Ia(/v at higher i//alues 519. ' points yield attraction to kink solutions moving to the right,
gne L : the other half leading to kink solutions moving to the left
We also checked the predictions of point-particle symme-

try arguments and perturbation theory for the case of bihar\!vIth the same velocily A similar study for the case ah

monic forces with odd harmonic mixing. In Fig. 10 the dy- =2 did not show any dependence on the initial phase or on

namics of a kink driven by a biharmonic force with=3 is initial time. Due to the sensitivity on initial conditions, we
y conclude that the kink motion in the case=3 is not related

reported. In contrast with the prediction of the precedin o
section, we see that kink can acquire a drift velocity also i?]to the ratchet phenomendhis is similar to the cases re-

this case. The direction of the motion, however, depends ncROrteOI in Refs[19,20)).

only on the relative phase, but also on the initial phase Th? Phet mi%t'?n rc:bser\%ewo\: t:mi=3nc?rie rfort:‘z(ed r\wlarl{ m
initial time) of the driving force. By changing the initial ues ot the al pnase, NOWever, 1S an interesting phenom-
enon to explore by itself, since it is not linked with point-

particle features of the soliton dynami@these are excluded
by the results of the first order perturbation thepmnd is
entirely related to the soliton-phonon interaction in a similar
way as discussed in Rf13].

From the above analysis the following conclusions can be
drawn. Although first order perturbation theory captures
some qualitative feature of soliton ratchets, it does not pro-
vide a satisfactory description of the phenomenon. This is
clear both from the fact that there is a poor quantitative
agreement between the PDE results and first order perturba-
tion analysis in the case ofi=2, and from the fact that for
m=3 it fails to predict the existence of a drift velocity de-
pending on an initial phase.

The reason for this discrepancy is that this analysis in-
cludes only point-particle aspects of the soliton dynamics,
0.6 ignoring completely the internal structure of the soliton. In
E analogy with the mechanism described in R3], one
could expect a strong contribution to transport coming from

FIG. 9. The averaged kink velocity as a function of the driver the soliton-phonon interaction. Since this interaction arises
amplitudeE, with E,/E;=0.65, §=1.61. The rest of the param- Only at second order in a perturbation expansion, this ex-
eters were fixed a=0.11, «=0.15(*); w=0.35,a=0.15 (¢ ); plains why first order calculations fail to capture the phe-
0=0.35,¢=0.1 (O); w=0.35,=0.05 ). The inset shows the nhomenon.
log-log dependence. To elucidate the mechanism underlying soliton ratchets it

(14) implies aE3 dependence if one fixes the rafig /E,, as
done in the numerical simulationsWe remark, however,

0.25

-2

0.2},

In <v>
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FIG. 12. Countour plot for the displacement fialgdx,t) for
parameters as in Fig(d) and noise amplitud®=0.1.
tions go in competition with incoherent phonon excitations
present in the system. We have numerically checked that by
increasing the damping the internal mode oscillation become
< smaller and smaller and almost disappears in the over-

(C) damped limit. This correlates with the above numerical re-
sults showing a maximum for the drift velocity of the kink at
intermediate values of the damping and a rapid decreasing as
«a is increased.

It is worth to note that although there are no internal
modes frequencies in the spectrum of the small oscillation

FIG. 11. Kink profile and dynamics fax=0.15, ®=0.35, E; problem around exact soliton solutions of the pure sine-
=0.5,E,=0.325,0=1.61(a,b, andd=1.61-7=—1.53(c). The  Gordon equation, these can arise from the perturbation field
profile has been computed at the time monten600. The dashed ¢f when it is switched on. This makes the proposed internal
line shows the profile of the kink after one period of the externalmode mechanism for soliton ratchets quite generaL
drive. Let us now briefly investigate the influence of a white

noise on the kink ratchet dynamics. In Fig. 12 we report the

is useful to investigate the kink dc motion in more details. Incontour plot for the kink motion in the case of a biharmonic
Fig. 11 we depict the kink profile while executing the ratchetdriver with m=2. We see that the noise introduces distur-
dynamics in the case of m=2 driver. From this figure the bances on the profile but does not destroy the drift motion of
existence of an internal oscillatiofinternal modg of the  the soliton. We checked that this property remains true also if
kink profile is clearly seen. Note that the internal mode iswe increase the amplitude of the noise up to the kink-
strongly desymmetrized with respect to the center of theantikink nucleation limit. Moreover, the existence of the phe-
kink. In the panel(a) the kink moves from the left to the nomena in presence of noise shows the validity of the above
right and the mode appears behind the kink. We checked thaechanism also for the nondeterministic soliton ratchets.
the motion of the kink is locked to the external drive. This
can be seen from Fig. 11d), which shows the kink dynamics IV. BOUNDARY EFFECTS ON SOLITON RATCHETS
during two periods of the driving forc&(t). This is in
agreement with the results of R¢f.3]. The last panel(c), In this section we discuss the effects of the system bound-
shows the profile of the kink while moving in the opposite aries on the ratchet dynamics. We have solved the problem
direction than the one in pané). Note that when the kink for two types of boundary conditions: free endg(0,t)
moves to the left, the internal mode is on the right side from=u,(L,t)=0 and periodic boundary conditionsi(0)
the kink center, so it is again behind the kink. This result=u(L,t)+27n, n==*1, whereL is the length of the
indicates that there is an evident contribution to the directedample. The behavior of kink and antikink solutions does not
kink motion hidden in the asymmetric character of the inter-differ for both cases except, of course, for the behavior at the
nal mode and in its interaction with the kink center of massboundaries. For free boundaries one can show by perturba-
The internal mode mechanism can be expected to be effetion theory that the kink may be destroyed at the boundaries
tive only in the intermediate damping regimisay «  if its incoming kinetic energy is below a certain threshold.
~Q0(1)] since for high damping values oscillations on the This can be easily understood since at the boundary the kink
kink profile are heavily depresséthe soliton becomes like a undergoes a large-amplitude oscillation that, in the presence
rigid particle, while for very low damping internal oscilla- of damping, exposes the kink to larger dissipatitire oscil-

0 . .
100 150 200 250
X
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driver frequencies, to sustain a standing breather at the
boundary for very long time. Similar phenomena were also
observed in Ref[29].

To avoid the possibility of ratchet destruction at the
boundaries one can recourse to periodic boundary condi-
tions. In this case soliton ratchets, once established, will go
on forever(we have checked this numerically for very long
computation times This opens the possibility of interesting
physical applications as we will discuss at the end of the next
section.

30007

2000y

1000¢

50 100 150 200 250 V. CONCLUSIONS

In this paper we have considered a way to produce a
directed motion of a topological soliton in the presence of
, , , , damping, by using suitable ac drivers of zero mean. In par-
3000 1 ticular, we showed the possibility of establishing a ratchet
(b) dynamics for a kink of the damped sine-Gordon equation
when a periodic force, consisting of two harmonic drivers, is
applied. In contrast to previous works, the observed dc mo-
tion does not require any asymmetry in the potential of sys-
tem, thus making the phenomena easily accessible to experi-
mental situations.

We also showed that a first order perturbation analysis
based on collective coordinates does not provide a complete
description of the phenomenon. The reason for this failure
was ascribed to the soliton-phonon interaction which, in a
perturbation analysis, appears only at second order. In par-
ticular we showed that the soliton-phonon interaction mani-
fests with the excitation of an internal mode on the soliton

FIG. 13. Contour plots of kinka) reflection andb) annihilation ~ profile that, in the presence of damping, can interact with its
at the boundary. The system parametersaa+e0.11, E;=0.4, E,  translation mode. This provides a basic mechanism to con-
=0.26, andd=1.61. The damping parameter was-0.08 for the  vert the energy of the ac field into direct motion for the
case(a) anda=0.12 for the caséb). The inset shows the antikink soliton that is valid for a wide class of underdamped or mod-
profile after reflection at timé= 3200. erately damped nonlinear systems. Numerical simulations of

the sine-Gordon equation confirm the validity of the pro-
lation will be damped and the kink will not be able to attain posed mechanism. We also investigated the influence of
the — 27 value and get reflected as antikinkhe synchro-  boundary conditions on the ratchets dynamics in finite sine-
nization of the soliton motion with the external ac field, asGordon systems. For reflective boundaries we showed the
well as the fact that kink and antikink ratchets move in op-possibility for soliton ratchet to overcome reflections in pres-
posite directions, can allow sufficiently energetic solitonence of dissipation(for periodic boundary conditions the
ratchets to overcome reflections in the presence of dampingoliton ratchet, once established, will, obviously, go on for-
This is clearly shown in Fig. 18 where a kink-antikink evep. Finally, we showed that the phenomenon of soliton
ratchet reflection is shown. ratchet is robust enough to overcome the presence of the

The possibility to overcome reflection, however, requiresnoise in the system.
overcoming a critical energy threshold that depends on the This result opens the possibility of interesting applications
system parameters. In Fig. (b3 we show the case in which in different fields. In the context of Josephson junctions, for
the soliton ratchet is destroyed at the boundary. At lowexample, one can predict the existence of a zero field step
damping the collision of the kink with the boundary generate(i.e., steps in the current-voltage characteristic related to the
oscillations which decay, after some time, leading to the deresonant fluxon motion in the junctipin the absence of dc
struction of the kink(increasing the damping the decay time bias current and in the presence of only biharmonic fields of
quickly decreases zero average. This effect should be best observable in annu-

The possibility of overcoming reflection depends also onlar Josephson junctions where no boundary problékirk
the relative phase of the driver and the internal mode oscileestruction exist. We also remark that “fluxon-ratchets” in-
lation on top of the kink(this dependence can be tested byducing zero field steps in Josephson junctions, have not yet
shifting the initial incoming positions of the kinkin gen-  been considered both theoretically and experimentallg
eral, besides kink-antikink reflections and kink destructionswill investigate this problem in more detail in a future pa-
more complicated phenomena can arise. These include theen.
possibility, for particular values of damping, amplitudes, and  Similar transport phenomena can be predicted also in a
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