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ABSTRACT: Battjes (1982) found the loads of short-crested random waves on a long structure decrease with the 

structure length and also with the obliqueness of wave incidence. These decreases come from the spatial phase 

difference along the structure. Lee et al. (2010) found that obliquely incident random waves in a nearshore area become 

directionally asymmetric due to refraction. They also found the asymmetry becomes more significant in shallower 

waters. Recently, Jung et al. (2011) studied random wave loads on a long structure considering diffraction and 

directional asymmetry. In this study, we further study random wave loads on a detached breakwater considering 

diffraction of waves which propagate at both ends of the breakwater. We also consider directional asymmetry. The 

structure may be placed along the bottom contours in order to protect on-shore incoming waves. In that case, refraction-

induced random waves may become asymmetric, i.e., on-shore components are more dominant than along-shore ones. 

Therefore, directional obliqueness on the structure becomes less and thus the wave loads decrease in less degree than 

the symmetric waves. When waves are obliquely incident on a long structure, the diffracting waves give forces on the 

lee side of the structure. The diffracting wave has a spatial phase variation along the lee side which is different from that 

the obliquely incident wave has on the front side. Thus, the wave loads decrease with the existence of diffracting waves 

and also the phase difference between the incident and diffracting waves. 
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INTRODUCTION 

In general, the load acting on structures such as a 

breast wall or a quay wall is mainly the earth force. 

Meanwhile, the load on coastal structures such as a 

breakwater or a floating structure is mainly the wave 

force. The main difference between the earth and wave 

force is whether the pressure is a function of time or not. 

The earth force hardly changes in time except special 

situation like an earthquake or a landslide. However, the 

wave force changes in time. Therefore, the maximum 

force by statistical approach or empirical formula is used 

for the design wave force in general. Trætteberg (1968) 

studied the force reduction of a long structure due to 

phase lag of waves and he found that wave force 

decreases with the length of structure. 

After a pioneering research of Trætteberg, several 

researchers have studied the wave force reduction on a 

long structure and found that the wave force decreases 

with the obliqueness of wave incidence. In particular, 

Battjes (1982) studied the wave force reduction of a long 

structure theoretically under directional random non-

breaking wave conditions. Takahashi and Shimosako 

(1990) and Franco et al. (1996) studied the force 

reduction of a long structure experimentally including 

breaking wave conditions. Martinelli et al. (2007) 

studied breaking and non-breaking wave force 

reductions for directional random waves theoretically 

using statistical method. Their results were only valid 

when relative length of structure ( l/L ) is less than 1.0. 

Jung et al. (2011) studied reduced force ratio of a semi-

infinite long structure considering diffracting wave 

forces. 

In this study, we develop reduced force ratio on a 

long detached breakwater considering wave diffraction. 

Diffracting effect on the detached breakwater may be 

more dominant than the semi-infinite breakwater 

because wave diffraction occurs at both ends of the 

detached breakwater unlike the semi-infinite breakwater. 

The reduced force ratio on the long detached breakwater 

is developed separately for regular waves, uni-

directional random waves and multi-directional random 

waves. The solution of Penney and Price (1952) is used 

to include the diffracting wave force. And, results with 

different directions of wave incidence and asymmetric 

parameters are given in detail. 
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REDUCED FORCE RATIO FOR REGULAR 

WAVES 

The definition sketch of topography and variables is 

shown in Fig. 1. In this figure, L  means the wavelength, 

  means the angle of wave ray from the normal 

direction of the structure, l  means the structure length 

and h  means the mean water depth. 

 

 

Fig. 1 Definition sketch for analysis of wave forces on a 

long detached breakwater 

 

Before calculating the reduced force ratio for random 

waves, we first derive the reduced force ratio for regular 

wave. Velocity potentials of the incident and perfectly 

reflected waves can be expressed as 
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where a is the amplitude of incident waves,   is the 

angular frequency, k  is the wave number and g  is the 

gravitational acceleration. The velocity potential of the 

superposed waves in front of the structure is 
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Velocity potentials of diffracting waves at both ends of a 

long detached breakwater can be given by 
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where  
1

b  and 
2

b  mean amplitudes of diffracting waves 

at both ends of the breakwater, 
1

  and 
2

  are the phase 

differences between diffracting waves and incident 

waves, respectively. Velocity potential of the diffracting 

waves at the back of the breakwater is given by 
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The linear wave pressure at the back of the breakwater 

can be expressed as 
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Finally, the total pressure at the breakwater is given by 
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The wave force per unit length of the structure can be 

derived as 
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The total wave force on the whole length of the structure 

can be expressed as 
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where  
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where  ,klr  means the reduced force ratio. The total 

force F  is maximum when   1sin t . The phase 

differences between incident and diffracting waves, 
1

  

and 
2

 , can be calculated by matching the phases of 

incident and diffracting waves at 2/ly   and 2/ly  , 

respectively, as 
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When 0
2
b , Eq. (10) is reduced to Jung et al.’s 

(2011) wave force on a semi-infinite breakwater 

and,when 0
21
 bb , Eq. (10) is reduced to Battjes’ 

(1982) wave force neglecting wave diffraction. 

 

AMPLITUDES OF DIFFRACTING WAVES 

The amplitude of diffracting waves on a long 

detached breakwater can be calculated using solutions of 

Penney and Price (1952). The amplitude of waves 

diffracting through the incident end is given by 
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Where 
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In eq. (19), 0
1
  when 2/ly   and the relation of 

  2/10 f  is true. Also, the relationship of 

  1,2/
1
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d

 is true. The amplitude of waves 

diffracting in the opposite end is given by 
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In eq. (22), 0
2
  when 2/ly   and the relations of 

  2/10 f  and   1,2/
12

lK
d

 are true. The amplitudes of 

diffracting waves at the back of the long detached 

breakwater are shown in Fig. 2. The amplitude of 

diffracting waves through the incident end increases with 

the angle of wave incidence. On the contrary, amplitude 

in the opposite end decreases with the angle of wave 

incidence. Amplitudes of diffracting waves are 

symmetric on the basis of 0y  in Fig. 2. 
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Fig. 2 Normalized amplitude of diffracting waves at the 

back of a detached breakwater ( Ll  ) 

  
REDUCED FORCE RATIO FOR RANDOM 

WAVES 

In this section, we calculate the reduced force ratio 

for random waves considering wave diffraction. The 

Reduction force ratios of uni- and multi-directional 

random waves are given, respectively, by 
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The reduced force ratios for incident waves, diffracting 

waves in the incident end in the opposite end can be 

defined as 
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When a length of long detached breakwater is 

convergent to 0, 
1

  and 
2

  are equal to 0 and the 

following relations is reduced 

 

0.1

sin
2

sin
2

sin

limlim
00



















kl

kl

A
ll

                              (28) 

 







2/

2/

1

010
5.0cos

2

1
limlim

l

l
ll

kydy
a

b

l
B               (29) 

 







2/

2/

1

010
0sin

2

1
limlim

l

l
ll

kydy
a

b

l
C                            (30) 

 
/2

2
2

0 0
/2

1
lim lim cos 0.5

2

l

l l
l

b
B kydy

l a 


                     (31) 

 







2/

2/

2

020
0sin

2

1
limlim

l

l
ll

kydy
a

b

l
C                            (32) 

 

When the length of the structure is reduced to 0, the 

relationships of   0.1,0 
I

r ,     5.0,0,0
21

 
dd

rr  and 

  0,0 r  are valid.  

Both regular wave and random waves are considered 

for incident waves. We use the JONSWAP frequency 

spectrum (Hasselmann et al. 1973) and the directional 

spreading function of Lee et al. (2010) which considers 

directional asymmetry. 

The total frequency spectrum is decomposed into 45 

components from 02.0f  to 0.25Hz and the directional 

spreading function  is decomposed into 181 components 

from 2/  to 2/ . So totally 8,145 components of 

waves are calculated and the results are superposed in 

order to get the total wave energy. The conditions are 

h  10m, 
3/1

H =5.0m and sec10
3/1
T  

 

CHARACTERISTICS OF WAVE FORCES ON A 

LONG DETACHED BREAKWATER 

The reduced force ratio on the long detached 

breakwater is calculated using eq. (11). The reduced 

force ratios are shown in Fig. 3 considering the phase 

difference between the incident and diffracting waves. 

However, Jung et al. (2011) calculated the reduced force 

ratio neglecting the phase difference and they selected 

1
  and 

2
  which give the maximum total wave force. 

The reduced force ratio in this study is 0 when the 

relative length of the structure is close to 0, but the result 

of Jung et al. (2011) is 2.0. When the relative length of 

the structure is greater than unity, the reduced force ratio 

in this study is almost equal to that of Jung et al. (2011) 

because the effects of diffracting wave decrease with the 

relative length of the structure. 
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Fig. 3 Comparison of reduced force ration between the 

present study and Jung et al.’s (2012) study (  0
p

 , 

3.3 , 10
max

s ) 

 

The reduced force ratios when incident wave angle is 

0 and 60 degree are shown in Fig. 4. The reduced force 

ratio of the long detached breakwater is 0 when the 

relative length of structure is 0. This is because incident 

wave force is equal to the diffracting wave force. The 

Reduced force ratio for long-crested waves converges to 

1.0 when the relative length of the structure is 

significantly long. However, the reduced force ratio for 

short-crested waves decreases as the relative length of 

the structure becomes longer. 

The reduced force ratios for incident wave angle of 

multi-directional random waves are shown in Fig. 5. The 

reduced force ratios decrease as the magnitude of 

incident wave angle increases. And the reduced force 

ratios for directional asymmetric waves are shown in Fig. 

6. The reduced force ratios increase when incident wave 

angle is positive and the reduced force ratios decrease 

when incident wave angle is negative as the asymmetry 

parameter decreases. 
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Fig. 4 Reduced force ratios with different wave 

conditions ( 3.3 , 10
max

s ) 
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Fig. 5 Reduced force ratios with different angles of wave 

incidence ( 3.3 , 10
max

s ) 
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(a)  30

p
  

 

l/L

R

0.0 1.0 2.0 3.0 4.0
0.0

0.5

1.0

1.5

 = -0.4

 = 0.0

 = 0.4

 
(b)  30
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Fig. 6 Reduced force ratios with different directional 

asymmetries ( 3.3 , 10
max

s ) 

 

 

CONCLUDING REMARKS 

In this study, the wave force on a long detached 

breakwater is investigated by considering phase 

difference between incident and diffracting waves. We 

study for incident waves which are regular waves, uni-

directional random waves and multi-directional random 

waves. Amplitude of diffracting waves is calculated 

using solutions suggested by Penney and Price (1952).  

When relative length of structure compared to the 

wavelength is 0, the reduced force ratio of a detached 

breakwater is 0. As the relative length of the structure 

increases the reduced force ratio increases rapidly and 

approach the peak value (about 0.9~1.0) And, when the 

relative length of the structure increases over about 0.5, 

the reduced force ratio decreases. The reduced force 

ratios decrease as the magnitude of incident wave angle 

increases. And the reduced force ratios increase when 
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incident wave angle is positive and the reduced force 

ratios decrease when incident wave angle is negative as 

asymmetry parameter decreases. 
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