86 research outputs found
Patterns of spatial variation of assemblages associated with intertidal rocky shores: A global perspective
Assemblages associated with intertidal rocky shores were examined for large scale distribution patterns with specific emphasis on identifying latitudinal trends of species richness and taxonomic distinctiveness. Seventy-two sites distributed around the globe were evaluated following the standardized sampling protocol of the Census of Marine Life NaGISA project (www.nagisa.coml.org). There were no clear patterns of standardized estimators of species richness along latitudinal gradients or among Large Marine Ecosystems (LMEs); however, a strong latitudinal gradient in taxonomic composition (i.e., proportion of different taxonomic groups in a given sample) was observed. Environmental variables related to natural influences were strongly related to the distribution patterns of the assemblages on the LME scale, particularly photoperiod, sea surface temperature (SST) and rainfall. In contrast, no environmental variables directly associated with human influences (with the exception of the inorganic pollution index) were related to assemblage patterns among LMEs. Correlations of the natural assemblages with either latitudinal gradients or environmental variables were equally strong suggesting that neither neutral models nor models based solely on environmental variables sufficiently explain spatial variation of these assemblages at a global scale. Despite the data shortcomings in this study (e.g., unbalanced sample distribution), we show the importance of generating biological global databases for the use in large-scale diversity comparisons of rocky intertidal assemblages to stimulate continued sampling and analyses.Fil: Cruz-Motta, Juan José. Universidad Simón Bolívar; VenezuelaFil: Miloslavich, Patricia. Universidad Simón Bolívar; VenezuelaFil: Palomo, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”; ArgentinaFil: Iken, Katrin. University Of Alaska; Estados UnidosFil: Konar, Brenda. University Of Alaska; Estados UnidosFil: Pohle, Gerhard. Huntsman Marine Science Centre; CanadáFil: Trott, Tom. Suffolk University;Fil: Benedetti-Cecchi, Lisandro. Università degli Studi di Pisa; ItaliaFil: Herrera, César. Universidad Simón Bolívar; VenezuelaFil: Hernández, Alejandra. Universidad Simón Bolívar; VenezuelaFil: Sardi, Adriana. Universidad Simón Bolívar; VenezuelaFil: Bueno, Andrea. Universidad Simón Bolívar; VenezuelaFil: Castillo, Julio. Universidad Simón Bolívar; VenezuelaFil: Klein, Eduardo. Universidad Simón Bolívar; VenezuelaFil: Guerra-Castro, Edlin. Instituto Venezolano de Investigaciones Científicas; VenezuelaFil: Gobin, Judith. The University Of The West Indies, St. Augustine Campus;Fil: Gómez, Diana Isabel. Instituto de Investigaciones Marinas y Costeras José Benito Vives de Andréis; ColombiaFil: Riosmena-Rodríguez, Rafael. Universidad Autonoma de Baja California Sur; Estados UnidosFil: Mead, Angela. University Of Cape Town;Fil: Bigatti, Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; ArgentinaFil: Knowlton, Ann. University Of Alaska; Estados UnidosFil: Shirayama, Yoshihisa. Field Science Education And Research Center
Chitin-based Materials in Tissue Engineering: Applications in Soft Tissue and Epithelial Organ
Chitin-based materials and their derivatives are receiving increased attention in tissue engineering because of their unique and appealing biological properties. In this review, we summarize the biomedical potential of chitin-based materials, specifically focusing on chitosan, in tissue engineering approaches for epithelial and soft tissues. Both types of tissues play an important role in supporting anatomical structures and physiological functions. Because of the attractive features of chitin-based materials, many characteristics beneficial to tissue regeneration including the preservation of cellular phenotype, binding and enhancement of bioactive factors, control of gene expression, and synthesis and deposition of tissue-specific extracellular matrix are well-regulated by chitin-based scaffolds. These scaffolds can be used in repairing body surface linings, reconstructing tissue structures, regenerating connective tissue, and supporting nerve and vascular growth and connection. The novel use of these scaffolds in promoting the regeneration of various tissues originating from the epithelium and soft tissue demonstrates that these chitin-based materials have versatile properties and functionality and serve as promising substrates for a great number of future applications
A sustainable ocean for all
Welcome to the opening editorial of npj Ocean Sustainability. This new interdisciplinary journal aims to provide a unique forum for sharing research, critically debating issues, and advancing practical solutions to achieve ocean sustainability. The ocean and people are deeply interconnected. Thus, decision-makers require integrative, interdisciplinary, and transdisciplinary knowledge to design solutions and approaches based on the multitude of visions for what a sustainable ocean entails. For that reason, the journal recognizes the benefits of knowledge pluralism and equally welcomes research from natural and social sciences; from marine ecology to Indigenous Studies; from the legal, policy, and management sciences to medical sciences, to arts and humanities. We acknowledge the fundamental need to understand and integrate the environmental and human dimensions into ocean research and management to effectively ensure long-term sustainable ocean use and conservation. We also acknowledge that while the ocean is “one” from a biophysical standpoint, there is a “plurality” of values and relationships between humans and the ocean, emerging from multiple geographical and historical specificities that need to be accounted for
Building leaders for the UN Ocean Science Decade : a guide to supporting early career women researchers within academic marine research institutions
Diverse and inclusive marine research is paramount to addressing ocean sustainability challenges in the 21st century, as envisioned by the UN Decade of Ocean Science for Sustainable Development. Despite increasing efforts to diversify ocean science, women continue to face barriers at various stages of their career, which inhibits their progression to leadership within academic institutions. In this perspective, we draw on the collective experiences of thirty-four global women leaders, bolstered by a narrative review, to identify practical strategies and actions that will help empower early career women researchers to become the leaders of tomorrow. We propose five strategies: (i) create a more inclusive culture, (ii) ensure early and equitable career development opportunities for women ECRs, (iii) ensure equitable access to funding for women ECRs, (iv) offer mentoring opportunities and, (v) create flexible, family-friendly environments. Transformational, meaningful, and lasting change will only be achieved through commitment and collaborative action across various scales and by multiple stakeholders.Peer reviewe
Marine Biodiversity in the Caribbean: Regional Estimates and Distribution Patterns
This paper provides an analysis of the distribution patterns of marine biodiversity and summarizes the major activities of the Census of Marine Life program in the Caribbean region. The coastal Caribbean region is a large marine ecosystem (LME) characterized by coral reefs, mangroves, and seagrasses, but including other environments, such as sandy beaches and rocky shores. These tropical ecosystems incorporate a high diversity of associated flora and fauna, and the nations that border the Caribbean collectively encompass a major global marine biodiversity hot spot. We analyze the state of knowledge of marine biodiversity based on the geographic distribution of georeferenced species records and regional taxonomic lists. A total of 12,046 marine species are reported in this paper for the Caribbean region. These include representatives from 31 animal phyla, two plant phyla, one group of Chromista, and three groups of Protoctista. Sampling effort has been greatest in shallow, nearshore waters, where there is relatively good coverage of species records; offshore and deep environments have been less studied. Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups. Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles) and the northern coast of South America (Venezuela – Colombia), while no pattern can be observed in the deep sea with the available data. Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1) highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2) high variability among collecting methods, (3) limited taxonomic expertise for many groups, and (4) differing levels of activity in the study of different taxa
Global maps of soil temperature
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
Global maps of soil temperature
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
Global maps of soil temperature
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
Global maps of soil temperature.
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
ESTADO DEL CONOCIMIENTO DE LOS POLIQUETOS DE TRINIDAD Y TOBAGO
RESUMEN: La república de islas gemelas de Trinidad y Tobago, es el país más meridional de las islas del Caribe ubicado entre los 10° y 11° de latitud Norte y los 60° y 61° de longitud Oeste. Sus aguas marino costeras son fuentes de recursos naturales económicamente importantes al igual que con la mayoría de los pequeños estados insulares del Caribe. Trinidad y Tobago es un productor de petróleo y gas natural, siendo el sector energético el más importante contribuyente al PIB (producto interno bruto) del país. Trinidad fue una vez parte del continente sudamericano y está situado en su plataforma continental separada de Venezuela por el Golfo de Paria, un cuerpo de agua semi-cerrado; Tobago en cambio es parte de la cadena de arco islas situada en la Placa del Caribe.Históricamente, la investigación científica en el ambiente marino de Trinidad y Tobago fue realizada por científicos ávidos de conocimientos sobre la biodiversidad marina a bordo de buques extranjeros. Estas expediciones permitieron realizar los primeros inventarios sobre de poliquetos marinos. El primero de ellos se llevó a cabo en 1978 por el Instituto de Asuntos Marinos (Institute of Marine Affairs: IMA) en la zona costera de Point Lisas. Fue en este mismo instituto que la autora de este capítulo desarrolló sus habilidades como la primera especialista en taxonomía de poliquetos en Trinidad y Tobago contribuyendo significativamente al conocimiento de este importante grupo zoológico en las islas. Sin embargo, todavía hay mucho por hacer en términos de diversidad y biología de poliquetos en Trinidad y Tobago, por lo cual debe lograrse una mayor inversión en esta área científica marina
- …
