1,132 research outputs found

    Strategi of linking of the university with the socio- economic context as a training student way

    Get PDF
    Currently one of the fundamental processes in public and private universities is the linking process with the socioeconomic context as an important way to train professionals that society requires. While more efficient it is, greater advantages and benefits are for the different stakeholders, particularly students. The linking at the Faculty of Mechanical and Electrical Engineering (FIME) of the University of Nuevo LeĂłn State (UANL) of Mexico with industry and society in general is a process that, since its conception in 1960, has served as a driver process for important achievements, although, as a dynamic and multifactorial process requires constant improvement. This improvement must be based on knowledge of its actual state. The aim of this paper is to analyze the current situation and perspective of that process in order to develop strategies that give advantage to the integral training that favors the interrelation of personal and professional training of the future engineers. The methodology used for this study combines methods and techniques of the empirical and theoretical levels such as: analysis, synthesis, historical and logical, and surveys of employers, teachers and students

    Magnetic fields inferred by Solar Orbiter: A comparison between SO/PHI-HRT and SDO/HMI

    Full text link
    The High Resolution Telescope (HRT) of the Polarimetric and Helioseismic Imager on board the Solar Orbiter spacecraft (SO/PHI) and the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) both infer the photospheric magnetic field from polarised light images. SO/PHI is the first magnetograph to move out of the Sun--Earth line and will provide unprecedented access to the Sun's poles. This provides excellent opportunities for new research wherein the magnetic field maps from both instruments are used simultaneously. We aim to compare the magnetic field maps from these two instruments and discuss any possible differences between them. We used data from both instruments obtained during Solar Orbiter's inferior conjunction on 7 March 2022. The HRT data were additionally treated for geometric distortion and degraded to the same resolution as HMI. The HMI data were re-projected to correct for the 3∘3^{\circ} separation between the two observatories. SO/PHI-HRT and HMI produce remarkably similar line-of-sight magnetograms, with a slope coefficient of 0.970.97, an offset below 11 G, and a Pearson correlation coefficient of 0.970.97. However, SO/PHI-HRT infers weaker line-of-sight fields for the strongest fields. As for the vector magnetic field, SO/PHI-HRT was compared to both the 720720-second and 9090-second HMI vector magnetic field: SO/PHI-HRT has a closer alignment with the 9090-second HMI vector. In the weak signal regime (<600< 600 G), SO/PHI-HRT measures stronger and more horizontal fields than HMI, very likely due to the greater noise in the SO/PHI-HRT data. In the strong field regime (≳600\gtrsim 600 G), HRT infers lower field strengths but with similar inclinations (a slope of 0.920.92) and azimuths (a slope of 1.021.02). The slope values are from the comparison with the HMI 9090-second vector.Comment: 10 pages, 5 figures, accepted for publication in A&A; manuscript is a part of Astronomy & Astrophysics special issue: Solar Orbiter First Results (Nominal Mission Phase

    Wavefront error of PHI/HRT on Solar Orbiter at various heliocentric distances

    Full text link
    We use wavefront sensing to characterise the image quality of the the High Resolution Telescope (HRT) of the Polarimetric and Helioseismic Imager (SO/PHI) data products during the second remote sensing window of the Solar Orbiter (SO) nominal mission phase. Our ultimate aims are to reconstruct the HRT data by deconvolving with the HRT point spread function (PSF) and to correct for the effects of optical aberrations on the data. We use a pair of focused--defocused images to compute the wavefront error and derive the PSF of HRT by means of a phase diversity (PD) analysis. The wavefront error of HRT depends on the orbital distance of SO to the Sun. At distances >0.5>0.5\,au, the wavefront error is small, and stems dominantly from the inherent optical properties of HRT. At distances <0.5<0.5\,au, the thermo-optical effect of the Heat Rejection Entrance Window (HREW) becomes noticeable. We develop an interpolation scheme for the wavefront error that depends on the thermal variation of the HREW with the distance of SO to the Sun. We also introduce a new level of image reconstruction, termed `aberration correction', which is designed to reduce the noise caused by image deconvolution while removing the aberrations caused by the HREW. The computed PSF via phase diversity significantly reduces the degradation caused by the HREW in the near-perihelion HRT data. In addition, the aberration correction increases the noise by a factor of only 1.451.45 compared to the factor of 33 increase that results from the usual PD reconstructions

    The ratio of horizontal to vertical displacement in solar oscillations estimated from combined SO/PHI and SDO/HMI observations

    Full text link
    In order to make accurate inferences about the solar interior using helioseismology, it is essential to understand all the relevant physical effects on the observations. One effect to understand is the (complex-valued) ratio of the horizontal to vertical displacement of the p- and f-modes at the height at which they are observed. Unfortunately, it is impossible to measure this ratio directly from a single vantage point, and it has been difficult to disentangle observationally from other effects. In this paper we attempt to measure the ratio directly using 7.5 hours of simultaneous observations from the Polarimetric and Helioseismic Imager on board Solar Orbiter and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. While image geometry problems make it difficult to determine the exact ratio, it appears to agree well with that expected from adiabatic oscillations in a standard solar model. On the other hand it does not agree with a commonly used approximation, indicating that this approximation should not be used in helioseismic analyses. In addition, the ratio appears to be real-valued.Comment: Accepted for publication in Astronomy & Astrophysics. 8 pages, 8 figure

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Sequencing of Androgen-Deprivation Therapy of Short Duration With Radiotherapy for Nonmetastatic Prostate Cancer (SANDSTORM): A Pooled Analysis of 12 Randomized Trials

    Get PDF
    PURPOSE: The sequencing of androgen-deprivation therapy (ADT) with radiotherapy (RT) may affect outcomes for prostate cancer in an RT-field size-dependent manner. Herein, we investigate the impact of ADT sequencing for men receiving ADT with prostate-only RT (PORT) or whole-pelvis RT (WPRT). MATERIALS AND METHODS: Individual patient data from 12 randomized trials that included patients receiving neoadjuvant/concurrent or concurrent/adjuvant short-term ADT (4-6 months) with RT for localized disease were obtained from the Meta-Analysis of Randomized trials in Cancer of the Prostate consortium. Inverse probability of treatment weighting (IPTW) was performed with propensity scores derived from age, initial prostate-specific antigen, Gleason score, T stage, RT dose, and mid-trial enrollment year. Metastasis-free survival (primary end point) and overall survival (OS) were assessed by IPTW-adjusted Cox regression models, analyzed independently for men receiving PORT versus WPRT. IPTW-adjusted Fine and Gray competing risk models were built to evaluate distant metastasis (DM) and prostate cancer-specific mortality. RESULTS: Overall, 7,409 patients were included (6,325 neoadjuvant/concurrent and 1,084 concurrent/adjuvant) with a median follow-up of 10.2 years (interquartile range, 7.2-14.9 years). A significant interaction between ADT sequencing and RT field size was observed for all end points (P interaction < .02 for all) except OS. With PORT (n = 4,355), compared with neoadjuvant/concurrent ADT, concurrent/adjuvant ADT was associated with improved metastasis-free survival (10-year benefit 8.0%, hazard ratio [HR], 0.65; 95% CI, 0.54 to 0.79; P < .0001), DM (subdistribution HR, 0.52; 95% CI, 0.33 to 0.82; P = .0046), prostate cancer-specific mortality (subdistribution HR, 0.30; 95% CI, 0.16 to 0.54; P < .0001), and OS (HR, 0.69; 95% CI, 0.57 to 0.83; P = .0001). However, in patients receiving WPRT (n = 3,049), no significant difference in any end point was observed in regard to ADT sequencing except for worse DM (HR, 1.57; 95% CI, 1.20 to 2.05; P = .0009) with concurrent/adjuvant ADT. CONCLUSION: ADT sequencing exhibits a significant impact on clinical outcomes with a significant interaction with field size. Concurrent/adjuvant ADT should be the standard of care where short-term ADT is indicated in combination with PORT

    Coronal voids and their magnetic nature

    Get PDF
    Context: Extreme ultraviolet (EUV) observations of the quiet solar atmosphere reveal extended regions of weak emission compared to the ambient quiescent corona. The magnetic nature of these coronal features is not well understood. // Aims: We study the magnetic properties of the weakly emitting extended regions, which we name coronal voids. In particular, we aim to understand whether these voids result from a reduced heat input into the corona or if they are associated with mainly unipolar and possibly open magnetic fields, similar to coronal holes. // Methods: We defined the coronal voids via an intensity threshold of 75% of the mean quiet-Sun (QS) EUV intensity observed by the high-resolution EUV channel (HRIEUV) of the Extreme Ultraviolet Imager on Solar Orbiter. The line-of-sight magnetograms of the same solar region recorded by the High Resolution Telescope of the Polarimetric and Helioseismic Imager allowed us to compare the photospheric magnetic field beneath the coronal voids with that in other parts of the QS. // Results: The coronal voids studied here range in size from a few granules to a few supergranules and on average exhibit a reduced intensity of 67% of the mean value of the entire field of view. The magnetic flux density in the photosphere below the voids is 76% (or more) lower than in the surrounding QS. Specifically, the coronal voids show much weaker or no network structures. The detected flux imbalances fall in the range of imbalances found in QS areas of the same size. // Conclusions: We conclude that coronal voids form because of locally reduced heating of the corona due to reduced magnetic flux density in the photosphere. This makes them a distinct class of (dark) structure, different from coronal holes

    Coronal voids and their magnetic nature

    Full text link
    Context. Extreme ultraviolet (EUV) observations of the quiet solar atmosphere reveal extended regions of weak emission compared to the ambient quiescent corona. The magnetic nature of these coronal features is not well understood.Aims. We study the magnetic properties of the weakly emitting extended regions, which we name coronal voids. In particular, we aim to understand whether these voids result from a reduced heat input into the corona or if they are associated with mainly unipolar and possibly open magnetic fields, similar to coronal holes. Methods. We defined the coronal voids via an intensity threshold of 75% of the mean quiet-Sun (QS) EUV intensity observed by the high- resolution EUV channel (HRIEUV) of the Extreme Ultraviolet Imager on Solar Orbiter. The line-of-sight magnetograms of the same solar region recorded by the High Resolution Telescope of the Polarimetric and Helioseismic Imager allowed us to compare the photospheric magnetic field beneath the coronal voids with that in other parts of the QS.Results. The coronal voids studied here range in size from a few granules to a few supergranules and on average exhibit a reduced intensity of 67% of the mean value of the entire field of view. The magnetic flux density in the photosphere below the voids is 76% (or more) lower than in the surrounding QS. Specifically, the coronal voids show much weaker or no network structures. The detected flux imbalances fall in the range of imbalances found in QS areas of the same size. Conclusions. We conclude that coronal voids form because of locally reduced heating of the corona due to reduced magnetic flux density in the photosphere. This makes them a distinct class of (dark) structure, different from coronal holes

    Spectropolarimetric investigation of magnetohydrodynamic wave modes in the photosphere: First results from PHI on board Solar Orbiter

    Get PDF
    This is an Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Context. In November 2021, Solar Orbiter started its nominal mission phase. The remote-sensing instruments on board the spacecraft acquired scientific data during three observing windows surrounding the perihelion of the first orbit of this phase. Aims. The aim of the analysis is the detection of magnetohydrodynamic (MHD) wave modes in an active region by exploiting the capabilities of spectropolarimetric measurements. Mthods. The High Resolution Telescope (HRT) of the Polarimetric and Helioseismic Imager (SO/PHI) on board the Solar Orbiter acquired a high-cadence data set of an active region. This is studied in the paper. B-ω and phase-difference analyses are applied on line-of-sight velocity and circular polarization maps and other averaged quantities. Results. We find that several MHD modes at different frequencies are excited in all analysed structures. The leading sunspot shows a linear dependence of the phase lag on the angle between the magnetic field and the line of sight of the observer in its penumbra. The magnetic pore exhibits global resonances at several frequencies, which are also excited by different wave modes. Conclusions. The SO/PHI measurements clearly confirm the presence of magnetic and velocity oscillations that are compatible with one or more MHD wave modes in pores and a sunspot. Improvements in modelling are still necessary to interpret the relation between the fluctuations of different diagnostics. © The Authors 2023.Solar Orbiter is a space mission of international collaboration between ESA and NASA, operated by ESA. We are grateful to the ESA SOC and MOC teams for their support. The German contribution to SO/PHI is funded by the BMWi through DLR and by MPG central funds. The Spanish contribution is funded by AEI/MCIN/10.13039/501100011033/ (RTI2018-096886-C5, PID2021-125325OB-C5, PCI2022-135009-2) and ERDF “A way of making Europe”; “Center of Excellence Severo Ochoa” awards to IAA-CSIC (SEV-2017-0709, CEX2021-001131-S); and a RamĂłn y Cajal fellowship awarded to DOS. The French contribution is funded by CNES. The authors wish to acknowledge scientific discussions with the Waves in the Lower Solar Atmosphere (WaLSA; https://WaLSA.team) team, which has been supported by the Research Council of Norway (project no. 262622), The Royal Society (award no. Hooke18b/SCTM), and the International Space Science Institute (ISSI Team 502).Peer reviewe
    • 

    corecore