970 research outputs found
Mutual information rate and bounds for it
The amount of information exchanged per unit of time between two nodes in a
dynamical network or between two data sets is a powerful concept for analysing
complex systems. This quantity, known as the mutual information rate (MIR), is
calculated from the mutual information, which is rigorously defined only for
random systems. Moreover, the definition of mutual information is based on
probabilities of significant events. This work offers a simple alternative way
to calculate the MIR in dynamical (deterministic) networks or between two data
sets (not fully deterministic), and to calculate its upper and lower bounds
without having to calculate probabilities, but rather in terms of well known
and well defined quantities in dynamical systems. As possible applications of
our bounds, we study the relationship between synchronisation and the exchange
of information in a system of two coupled maps and in experimental networks of
coupled oscillators
A Comprehensive Analysis of Electric Dipole Moment Constraints on CP-violating Phases in the MSSM
We analyze the constraints placed on individual, flavor diagonal CP-violating
phases in the minimal supersymmetric extension of the Standard Model (MSSM) by
current experimental bounds on the electric dipole moments (EDMs) of the
neutron, Thallium, and Mercury atoms. We identify the four CP-violating phases
that are individually highly constrained by current EDM bounds, and we explore
how these phases and correlations among them are constrained by current EDM
limits. We also analyze the prospective implications of the next generation of
EDM experiments. We point out that all other CP-violating phases in the MSSM
are not nearly as tightly constrained by limits on the size of EDMs. We
emphasize that a rich set of phenomenological consequences is potentially
associated with these generically large EDM-allowed phases, ranging from B
physics, electroweak baryogenesis, and signals of CP-violation at the CERN
Large Hadron Collider and at future linear colliders. Our numerical study takes
into account the complete set of contributions from one- and two-loop EDMs of
the electron and quarks, one- and two-loop Chromo-EDMs of quarks, the Weinberg
3-gluon operator, and dominant 4-fermion CP-odd operator contributions,
including contributions which are both included and not included yet in the
CPsuperH2.0 package. We also introduce an open-source numerical package, 2LEDM,
which provides the complete set of two-loop electroweak diagrams contributing
to the electric dipole moments of leptons and quarks.Comment: 23 pages, 11 figures; v2: references added, minor change
Keratocystic odontogenic tumor overexpresses invadopodia-related proteins, suggesting invadopodia formation
OBJECTIVE: Keratocystic odontogenic tumor (KOT) is an odontogenic neoplasm that shows aggressive clinical behavior and local invasiveness. Invadopodia are actin-rich cellular protrusions exhibiting proteolytic pericellular activity, thereby inducing focal invasion in neoplastic cells and increasing neoplasms aggressiveness. Thus, this study aimed to evaluate immunoexpression of invadopodia-related proteins, cortactin, MT1-MMP, Tks4, and Tks5, in KOT. STUDY DESIGN: Immunohistochemistry of 16 cases of KOT, eight cases of calcifying cystic odontogenic tumor (CCOT), and eight samples of the oral mucosa (OM) was carried out to assess the expression of the above described invadopodia-related proteins in the basal and suprabasal layer. RESULTS: KOT samples showed higher and significant immunoexpression of cortactin, MT1-MMP, TKs4, and TKs5 compared with the CCOT and OM samples. Significant expression of all these proteins was observed in the basal layer compared with the suprabasal layer in KOT. CONCLUSIONS: Overexpression of cortactin, MT1-MMP, TKs4, and TKs5 was observed in KOT compared with samples of CCOT and OM. These proteins were also overexpressed in the basal over the suprabasal layer of KOT samples. Taken together, these results suggest the participation of invadopodia-related proteins on the pathogenesis of this lesion
BLOC-2 targets recycling endosomal tubules to melanosomes for cargo delivery.
Hermansky-Pudlak syndrome (HPS) is a group of disorders characterized by the malformation of lysosome-related organelles, such as pigment cell melanosomes. Three of nine characterized HPS subtypes result from mutations in subunits of BLOC-2, a protein complex with no known molecular function. In this paper, we exploit melanocytes from mouse HPS models to place BLOC-2 within a cargo transport pathway from recycling endosomal domains to maturing melanosomes. In BLOC-2-deficient melanocytes, the melanosomal protein TYRP1 was largely depleted from pigment granules and underwent accelerated recycling from endosomes to the plasma membrane and to the Golgi. By live-cell imaging, recycling endosomal tubules of wild-type melanocytes made frequent and prolonged contacts with maturing melanosomes; in contrast, tubules from BLOC-2-deficient cells were shorter in length and made fewer, more transient contacts with melanosomes. These results support a model in which BLOC-2 functions to direct recycling endosomal tubular transport intermediates to maturing melanosomes and thereby promote cargo delivery and optimal pigmentation
Ucma/GRP inhibits phosphate-induced vascular smooth muscle cell calcification via SMAD-dependent BMP signalling
Vascular calcification (VC) is the process of deposition of calcium phosphate crystals in the blood vessel wall, with a central role for vascular smooth muscle cells (VSMCs). VC is highly prevalent in chronic kidney disease (CKD) patients and thought, in part, to be induced by phosphate imbalance. The molecular mechanisms that regulate VC are not fully known. Here we propose a novel role for the mineralisation regulator Ucma/GRP (Upper zone of growth plate and Cartilage Matrix Associated protein/Gla Rich Protein) in phosphate-induced VSMC calcification. We show that Ucma/GRP is present in calcified atherosclerotic plaques and highly expressed in calcifying VSMCs in vitro. VSMCs from Ucma/GRP(-/-) mice showed increased mineralisation and expression of osteo/chondrogenic markers (BMP-2, Runx2, beta-catenin, p-SMAD1/5/8, ALP, OCN), and decreased expression of mineralisation inhibitor MGP, suggesting that Ucma/GRP is an inhibitor of mineralisation. Using BMP signalling inhibitor noggin and SMAD1/5/8 signalling inhibitor dorsomorphin we showed that Ucma/GRP is involved in inhibiting the BMP-2-SMAD1/5/8 osteo/chondrogenic signalling pathway in VSMCs treated with elevated phosphate concentrations. Additionally, we showed for the first time evidence of a direct interaction between Ucma/GRP and BMP-2. These results demonstrate an important role of Ucma/GRP in regulating osteo/chondrogenic differentiation and phosphate-induced mineralisation of VSMCs.NWO ZonMw [MKMD 40-42600-98-13007]; FCT [SFRH/BPD/70277/2010]info:eu-repo/semantics/publishedVersio
Ears of the Armadillo: Global Health Research and Neglected Diseases in Texas
Neglected tropical diseases (NTDs) have\ud
been recently identified as significant public\ud
health problems in Texas and elsewhere in\ud
the American South. A one-day forum on the\ud
landscape of research and development and\ud
the hidden burden of NTDs in Texas\ud
explored the next steps to coordinate advocacy,\ud
public health, and research into a\ud
cogent health policy framework for the\ud
American NTDs. It also highlighted how\ud
U.S.-funded global health research can serve\ud
to combat these health disparities in the\ud
United States, in addition to benefiting\ud
communities abroad
Concurrent validity of self-rating scale of self-directed learning and self-directed learning instrument among Italian nursing students
BACKGROUND: Self-Directed Learning develops when students take the initiative for their learning, recognising needs, formulating goals, identifying resources, implementing appropriate strategies and evaluating learning outcomes. This should be seen as a collaborative process between the nurse educator and the learner. At the international level, various instruments have been used to measure Self-Directed Learning abilities (SDL), both in original and in culturally-adapted versions. However, few instruments have been subjected to full validation, and no gold standard reference has been established to date. In addition, few researchers have adopted the established tools to assess the concurrent validity of the emerging new tools. Therefore, the aim of this study was to measure the concurrent validity between the Self-Rating Scale of Self-Directed Learning (SRSSDL_Ita) - Italian version and the Self-Directed Learning Instruments (SDLI) in undergraduate nursing students.
METHODS: A concurrent validity study design was conducted in a Bachelor level nursing degree programme located in Italy. All nursing students attending the first, second or third year (n=428) were the target sample. The SRSSDL_Ita, and the SDLI were used. The Pearson correlation was used to determine the concurrent validity between the instruments; the confidence of intervals (CI 95%) bias-corrected and accelerated bootstrap (BCa), were also calculated.
RESULTS: The majority of participants were students attending their first year (47.9%), and were predominately female (78.5%). Their average age was 22.5\ub14.1. The SDL abilities scores, as measured with the SRSSDL_Ita (min 40, max 200), were, on average, 160.79 (95% CI 159.10-162.57; median 160); while with the SDLI (min 20, max 100), they were on average 82.57 (95% CI 81.79-83.38; median 83). The Pearson correlation between the SRSSDL_Ita and SDLI instruments was 0.815 (CI BCa 95% 0.774-0.848), (p=0.000).
CONCLUSIONS: The findings confirm the concurrent validity of the SRSSDL_Ita with the SDLI. The SRSSDL_Ita instrument can be useful in the process of identifying Self-Directed Learning abilities, which are essential for students to achieve the expected learning goals and become lifelong learners
Rapid viral metagenomics using SMART-9N amplification and nanopore sequencing [version 2; peer review: 2 approved]
Emerging and re-emerging viruses are a global health concern. Genome sequencing as an approach for monitoring circulating viruses is currently hampered by complex and expensive methods. Untargeted, metagenomic nanopore sequencing can provide genomic information to identify pathogens, prepare for or even prevent outbreaks. SMART (Switching Mechanism at the 5' end of RNA Template) is a popular approach for RNA-Seq but most current methods rely on oligo-dT priming to target polyadenylated mRNA molecules. We have developed two random primed SMART-Seq approaches, a sequencing agnostic approach 'SMART-9N' and a version compatible rapid adapters available from Oxford Nanopore Technologies 'Rapid SMART-9N'. The methods were developed using viral isolates, clinical samples, and compared to a gold-standard amplicon-based method. From a Zika virus isolate the SMART-9N approach recovered 10kb of the 10.8kb RNA genome in a single nanopore read. We also obtained full genome coverage at a high depth coverage using the Rapid SMART-9N, which takes only 10 minutes and costs up to 45% less than other methods. We found the limits of detection of these methods to be 6 focus forming units (FFU)/mL with 99.02% and 87.58% genome coverage for SMART-9N and Rapid SMART-9N respectively. Yellow fever virus plasma samples and SARS-CoV-2 nasopharyngeal samples previously confirmed by RT-qPCR with a broad range of Ct-values were selected for validation. Both methods produced greater genome coverage when compared to the multiplex PCR approach and we obtained the longest single read of this study (18.5 kb) with a SARS-CoV-2 clinical sample, 60% of the virus genome using the Rapid SMART-9N method. This work demonstrates that SMART-9N and Rapid SMART-9N are sensitive, low input, and long-read compatible alternatives for RNA virus detection and genome sequencing and Rapid SMART-9N improves the cost, time, and complexity of laboratory work
- …