72 research outputs found

    A rare case of complete C2–C3 dislocation with mild neurological symptoms

    Get PDF
    The authors report a rare case of complete C2–C3 dislocation with unexpectedly mild neurological symptoms in a 57 year old man involved in a motor vehicle accident, who had previously undergone posterior laminectomy from C3 through C7. A retrospective chart analysis and a thorough radiographic review were performed. X-rays and CT of the cervical spine demonstrated a complete dislocation at the C2–C3 level. Computed tomographic angiography revealed disruption of both vertebral arteries; however, blood flow was evident in the basilar artery. After radiologically guided placement in cervical traction with tongs that reduced the subluxation by approximately 50% the patient had spontaneous eye opening and was able to follow commands. A two-stage 360(o) stabilization and fusion was performed and the patient was finally discharged 24 days after admission with his neurological status essentially unchanged. In conclusion, our patient presented with surprisingly mild neurological symptoms. The previously performed laminectomy could have both predisposed to injury as well as protected his spinal cord from potentially fatal trauma

    Types of the cerebral arterial circle (circle of Willis) in a Sri Lankan Population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The variations of the circle of Willis (CW) are clinically important as patients with effective collateral circulations have a lower risk of transient ischemic attack and stroke than those with ineffective collaterals. The aim of the present cadaveric study was to investigate the anatomical variations of the CW and to compare the frequency of prevalence of the different variations with previous autopsy studies as variations in the anatomy of the CW as a whole have not been studied in the Indian subcontinent.</p> <p>Methods</p> <p>The external diameter of all the arteries forming the CW in 225 normal Sri Lankan adult cadaver brains was measured using a calibrated grid to determine the prevalence in the variation in CW. Chisquared tests and a correspondence analysis were performed to compare the relative frequencies of prevalence of anatomical variations in the CW across 6 studies of diverse ethnic populations.</p> <p>Results</p> <p>We report 15 types of variations of CW out of 22 types previously described and one additional type: hypoplastic precommunicating part of the anterior cerebral arteries (A1) and contralateral posterior communicating arteries (PcoA) 5(2%). Statistically significant differences (p < 0.0001) were found between most of the studies except for the Moroccan study. An especially notable difference was observed in the following 4 configurations: 1) hypoplastic precommunicating part of the posterior cerebral arteries (P1), and contralateral A1, 2) hypoplastic PcoA and contralateral P1, 3) hypoplastic PcoA, anterior communicating artery (AcoA) and contralateral P1, 4) bilateral hypoplastic P1s and AcoA in a Caucasian dominant study by Fisher versus the rest of the studies.</p> <p>Conclusion</p> <p>The present study reveals that there are significant variations in the CW among intra and inter ethnic groups (Caucasian, African and Asian: Iran and Sri Lanka dominant populations), and warrants further studies keeping the methods of measurements, data assessment, and the definitions of hypoplasia the same.</p

    Transferrin changes in haemodialysed patients

    Get PDF
    Transferrin (Tf) is a glycoprotein responsible for iron transport in the human body. Physiologically in reaction with Concanavalin A, Tf occurs in four distinct variants Tf1, Tf2, Tf3 (apo-Tf) and Tf4. It was reported recently that Tf is changing, particularly during acute phase response, taking place among others in end-stage renal disease. In this study, we wanted to find the answer to three main questions: firstly, how Tf is changing in patients treated with maintenance haemodialysis (mHD), secondly, whether there are any Tf changes in the course of mHD treatment, and thirdly, what factors can affect Tf microheterogeneity in these patients. Studies were performed on 80 haemodialysed patients and 21 healthy volunteers. The Tf concentration was determined by the rocket immunoelectrophoresis, and its microheterogeneity was assessed by the ConA crossed immunoaffinity electrophoresis. During the annual observation of the distribution of the Tf variants, we have found both changes of the percentage contents of all Tf variants in the whole Tf concentration and a significant decrease in Tf2, Tf3 and Tf4 serum concentrations. Moreover, we found that decrease in the renal function, duration of mHD, and inflammation may contribute to these above-mentioned changes, which are probably the factors that should be taken into account when explaining the mechanisms of persistence of anaemia in haemodialysed patients

    Soil water content effects on net ecosystem CO2 exchange and actual evapotranspiration in a Mediterranean semiarid savanna of Central Chile

    Get PDF
    Biosphere-atmosphere water and carbon fluxes depend on ecosystem structure, and their magnitudes and seasonal behavior are driven by environmental and biological factors. We studied the seasonal behavior of net ecosystem CO2 exchange (NEE), Gross Primary Productivity (GPP), Ecosystem Respiration (RE), and actual evapotranspiration (ETa) obtained by eddy covariance measurements during two years in a Mediterranean Acacia savanna ecosystem (Acacia caven) in Central Chile. The annual carbon balance was −53 g C m−2 in 2011 and −111 g C m−2 in 2012, showing that the ecosystem acts as a net sink of CO2, notwithstanding water limitations on photosynthesis observed in this particularly dry period. Total annual ETa was of 128 mm in 2011 and 139 mm in 2012. Both NEE and ETa exhibited strong seasonality with peak values recorded in the winter season (July to September), as a result of ecosystem phenology, soil water content and rainfall occurrence. Consequently, the maximum carbon assimilation rate occurred in wintertime. Results show that soil water content is a major driver of GPP and RE, defining their seasonal patterns and the annual carbon assimilation capacity of the ecosystem, and also modulating the effect that solar radiation and air temperature have on NEE components at shorter time scales.This work was funded by FONDECYT projects 1120713 and 1170429, a grant from the Inter-American Institute for Global Change Research (IAI) [grant number CRN3056], which is supported by the US National Science Foundation [grant number GEO-1128040], and the Spanish Ministry of Economy and Competitiveness project GEI Spain (CGL2014-52838-C2-1-R), including ERDF founds. F. Bravo-Martínez is grateful to CONICYT for the grants “Formación de Capital Humano Avanzado-2009′′, “Beca de Apoyo al término de la tesis doctoral-2012′′, and CORFO INNOVA Grant N° 09CN14-5704. We thank to Enrique Pérez Sanchez-Cañete and Borja Ruíz- Reverter for technical support. We also thank “CODELCO–División Andina” for use of the site. C. Montes acknowledges the NASA Postdoctoral Program and to Universities Space Research Association

    Atypical processing of gaze cues and faces explains comorbidity between autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD)

    Get PDF
    This study investigated the neurobiological basis of comorbidity between autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). We compared children with ASD, ADHD or ADHD+ASD and typically developing controls (CTRL) on behavioural and electrophysiological correlates of gaze cue and face processing. We measured effects of ASD, ADHD and their interaction on the EDAN, an ERP marker of orienting visual attention towards a spatially cued location and the N170, a right-hemisphere lateralised ERP linked to face processing. We identified atypical gaze cue and face processing in children with ASD and ADHD+ASD compared with the ADHD and CTRL groups. The findings indicate a neurobiological basis for the presence of comorbid ASD symptoms in ADHD. Further research using larger samples is needed

    A Novel Form of Memory for Auditory Fear Conditioning at a Low-Intensity Unconditioned Stimulus

    Get PDF
    Fear is one of the most potent emotional experiences and is an adaptive component of response to potentially threatening stimuli. On the other hand, too much or inappropriate fear accounts for many common psychiatric problems. Cumulative evidence suggests that the amygdala plays a central role in the acquisition, storage and expression of fear memory. Here, we developed an inducible striatal neuron ablation system in transgenic mice. The ablation of striatal neurons in the adult brain hardly affected the auditory fear learning under the standard condition in agreement with previous studies. When conditioned with a low-intensity unconditioned stimulus, however, the formation of long-term fear memory but not short-tem memory was impaired in striatal neuron-ablated mice. Consistently, the ablation of striatal neurons 24 h after conditioning with the low-intensity unconditioned stimulus, when the long-term fear memory was formed, diminished the retention of the long-term memory. Our results reveal a novel form of the auditory fear memory depending on striatal neurons at the low-intensity unconditioned stimulus

    Mind the gap: connexins and cell–cell communication in the diabetic kidney

    Get PDF
    Connexins, assembled as a hexameric connexon, form a transmembrane hemichannel that provides a conduit for paracrine signalling of small molecules and ions to regulate the activity and function of adjacent cells. When hemichannels align and associate with similar channels on opposing cells, they form a continuous aqueous pore or gap junction, allowing the direct transmission of metabolic and electrical signals between coupled cells. Regulation of gap junction synthesis and channel activity is critical for cell function, and a number of diseases can be attributed to changes in the expression/function of these important proteins. Diabetic nephropathy is associated with several complex metabolic and inflammatory responses characterised by defects at the molecular, cellular and tissue level. In both type 1 and type 2 diabetes, glycaemic injury of the kidney is the leading cause of end-stage renal failure, a consequence of multiple aetiologies, including increased deposition of extracellular matrix, glomerular hyperfiltration, albuminuria and tubulointerstitial fibrosis. In diabetic nephropathy, loss of connexin mediated cell–cell communication within the nephron may represent an early sign of disease; however, our current knowledge of the role of connexins in the diabetic kidney is sparse. This review highlights recent evidence demonstrating that maintenance of connexin-mediated cell–cell communication could benefit region-specific renal function in diabetic nephropathy and suggests that these proteins should be viewed as a tantalising novel target for therapeutic intervention

    Food-associated cues alter forebrain functional connectivity as assessed with immediate early gene and proenkephalin expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cues predictive of food availability are powerful modulators of appetite as well as food-seeking and ingestive behaviors. The neurobiological underpinnings of these conditioned responses are not well understood. Monitoring regional immediate early gene expression is a method used to assess alterations in neuronal metabolism resulting from upstream intracellular and extracellular signaling. Furthermore, assessing the expression of multiple immediate early genes offers a window onto the possible sequelae of exposure to food cues, since the function of each gene differs. We used immediate early gene and proenkephalin expression as a means of assessing food cue-elicited regional activation and alterations in functional connectivity within the forebrain.</p> <p>Results</p> <p>Contextual cues associated with palatable food elicited conditioned motor activation and corticosterone release in rats. This motivational state was associated with increased transcription of the activity-regulated genes <it>homer1a</it>, <it>arc</it>, <it>zif268</it>, <it>ngfi-b </it>and c-<it>fos </it>in corticolimbic, thalamic and hypothalamic areas and of proenkephalin within striatal regions. Furthermore, the functional connectivity elicited by food cues, as assessed by an inter-regional multigene-expression correlation method, differed substantially from that elicited by neutral cues. Specifically, food cues increased cortical engagement of the striatum, and within the nucleus accumbens, shifted correlations away from the shell towards the core. Exposure to the food-associated context also induced correlated gene expression between corticostriatal networks and the basolateral amygdala, an area critical for learning and responding to the incentive value of sensory stimuli. This increased corticostriatal-amygdalar functional connectivity was absent in the control group exposed to innocuous cues.</p> <p>Conclusion</p> <p>The results implicate correlated activity between the cortex and the striatum, especially the nucleus accumbens core and the basolateral amygdala, in the generation of a conditioned motivated state that may promote excessive food intake. The upregulation of a number of genes in unique patterns within corticostriatal, thalamic, and hypothalamic networks suggests that food cues are capable of powerfully altering neuronal processing in areas mediating the integration of emotion, cognition, arousal, and the regulation of energy balance. As many of these genes play a role in plasticity, their upregulation within these circuits may also indicate the neuroanatomic and transcriptional correlates of extinction learning.</p

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore