175 research outputs found
Interaction of β-Sheet Folds with a Gold Surface
The adsorption of proteins on inorganic surfaces is of fundamental biological importance. Further, biomedical and nanotechnological applications increasingly use interfaces between inorganic material and polypeptides. Yet, the underlying adsorption mechanism of polypeptides on surfaces is not well understood and experimentally difficult to analyze. Therefore, we investigate here the interactions of polypeptides with a gold(111) surface using computational molecular dynamics (MD) simulations with a polarizable gold model in explicit water. Our focus in this paper is the investigation of the interaction of polypeptides with β-sheet folds. First, we concentrate on a β-sheet forming model peptide. Second, we investigate the interactions of two domains with high β-sheet content of the biologically important extracellular matrix protein fibronectin (FN). We find that adsorption occurs in a stepwise mechanism both for the model peptide and the protein. The positively charged amino acid Arg facilitates the initial contact formation between protein and gold surface. Our results suggest that an effective gold-binding surface patch is overall uncharged, but contains Arg for contact initiation. The polypeptides do not unfold on the gold surface within the simulation time. However, for the two FN domains, the relative domain-domain orientation changes. The observation of a very fast and strong adsorption indicates that in a biological matrix, no bare gold surfaces will be present. Hence, the bioactivity of gold surfaces (like bare gold nanoparticles) will critically depend on the history of particle administration and the proteins present during initial contact between gold and biological material. Further, gold particles may act as seeds for protein aggregation. Structural re-organization and protein aggregation are potentially of immunological importance
Incidence and Outcome of Invasive Fungal Diseases after Allogeneic Stem Cell Transplantation: A Prospective Study of the Gruppo Italiano Trapianto Midollo Osseo (GITMO).
AbstractEpidemiologic investigation of invasive fungal diseases (IFDs) in allogeneic hematopoietic stem cell transplantation (allo-HSCT) may be useful to identify subpopulations who might benefit from targeted treatment strategies. The Gruppo Italiano Trapianto Midollo Osseo (GITMO) prospectively registered data on 1858 consecutive patients undergoing allo-HSCT between 2008 and 2010. Logistic regression analysis was performed to identify risk factors for proven/probable IFD (PP-IFD) during the early (days 0 to 40), late (days 41 to 100), and very late (days 101 to 365) phases after allo-HSCT and to evaluate the impact of PP-IFDs on 1-year overall survival. The cumulative incidence of PP-IFDs was 5.1% at 40 days, 6.7% at 100 days, and 8.8% at 12 months post-transplantation. Multivariate analysis identified the following variables as associated with PP-IFDs: transplant from an unrelated volunteer donor or cord blood, active acute leukemia at the time of transplantation, and an IFD before transplantation in the early phase; transplant from an unrelated volunteer donor or cord blood and grade II-IV acute graft-versus-host disease (GVHD) in the late phase; and grade II-IV acute GVHD and extensive chronic GVHD in the very late phase. The risk for PP-IFD was significantly higher when acute GVHD was followed by chronic GVHD and when acute GVHD occurred in patients undergoing transplantation with grafts from other than matched related donors. The presence of PP-IFD was an independent factor in long-term survival (hazard ratio, 2.90; 95% confidence interval, 2.32 to 3.62; P < .0001). Our findings indicate that tailored prevention strategies may be useful in subpopulations at differing levels of risk for PP-IFDs
In Vivo Depletion of Lymphotoxin-Alpha Expressing Lymphocytes Inhibits Xenogeneic Graft-versus-Host-Disease
Graft-versus-host disease (GVHD) is a major barrier to successful allogeneic hematopoietic cell transplantation and is largely mediated by activated donor lymphocytes. Lymphotoxin (LT)-α is expressed by subsets of activated T and B cells, and studies in preclinical models demonstrated that targeted depletion of these cells with a mouse anti-LT-α monoclonal antibody (mAb) was efficacious in inhibiting inflammation and autoimmune disease. Here we demonstrate that LT-α is also upregulated on activated human donor lymphocytes in a xenogeneic model of GVHD and targeted depletion of these donor cells ameliorated GVHD. A depleting humanized anti-LT-α mAb, designated MLTA3698A, was generated that specifically binds to LT-α in both the soluble and membrane-bound forms, and elicits antibody-dependent cellular cytotoxicity (ADCC) activity in vitro. Using a human peripheral blood mononuclear cell transplanted SCID (Hu-SCID) mouse model of GVHD, the anti-human LT-α mAb specifically depleted activated LT-expressing human donor T and B cells, resulting in prolonged survival of the mice. A mutation in the Fc region, rendering the mAb incapable of mediating ADCC, abolished all in vitro and in vivo effects. These data support a role for using a depleting anti-LT-α antibody in treating immune diseases such as GVHD and autoimmune diseases
Measurement of CP-violation asymmetries in D0 to Ks pi+ pi-
We report a measurement of time-integrated CP-violation asymmetries in the
resonant substructure of the three-body decay D0 to Ks pi+ pi- using CDF II
data corresponding to 6.0 invfb of integrated luminosity from Tevatron ppbar
collisions at sqrt(s) = 1.96 TeV. The charm mesons used in this analysis come
from D*+(2010) to D0 pi+ and D*-(2010) to D0bar pi-, where the production
flavor of the charm meson is determined by the charge of the accompanying pion.
We apply a Dalitz-amplitude analysis for the description of the dynamic decay
structure and use two complementary approaches, namely a full Dalitz-plot fit
employing the isobar model for the contributing resonances and a
model-independent bin-by-bin comparison of the D0 and D0bar Dalitz plots. We
find no CP-violation effects and measure an asymmetry of ACP = (-0.05 +- 0.57
(stat) +- 0.54 (syst))% for the overall integrated CP-violation asymmetry,
consistent with the standard model prediction.Comment: 15 page
Search for Kaluza-Klein Graviton Emission in Collisions at TeV using the Missing Energy Signature
We report on a search for direct Kaluza-Klein graviton production in a data
sample of 84 of \ppb collisions at = 1.8 TeV, recorded
by the Collider Detector at Fermilab. We investigate the final state of large
missing transverse energy and one or two high energy jets. We compare the data
with the predictions from a -dimensional Kaluza-Klein scenario in which
gravity becomes strong at the TeV scale. At 95% confidence level (C.L.) for
=2, 4, and 6 we exclude an effective Planck scale below 1.0, 0.77, and 0.71
TeV, respectively.Comment: Submitted to PRL, 7 pages 4 figures/Revision includes 5 figure
Measurement of the average time-integrated mixing probability of b-flavored hadrons produced at the Tevatron
We have measured the number of like-sign (LS) and opposite-sign (OS) lepton
pairs arising from double semileptonic decays of and -hadrons,
pair-produced at the Fermilab Tevatron collider. The data samples were
collected with the Collider Detector at Fermilab (CDF) during the 1992-1995
collider run by triggering on the existence of and candidates
in an event. The observed ratio of LS to OS dileptons leads to a measurement of
the average time-integrated mixing probability of all produced -flavored
hadrons which decay weakly, (stat.)
(syst.), that is significantly larger than the world average .Comment: 47 pages, 10 figures, 15 tables Submitted to Phys. Rev.
Constraints on models of the Higgs boson with exotic spin and parity using decays to bottom-antibottom quarks in the full CDF data set
A search for particles with the same mass and couplings as those of the standard model Higgs boson but different spin and parity quantum numbers is presented. We test two specific alternative Higgs boson hypotheses: a pseudoscalar Higgs boson with spin-parity JP=0- and a gravitonlike Higgs boson with JP=2+, assuming for both a mass of 125GeV/c2. We search for these exotic states produced in association with a vector boson and decaying into a bottom-antibottom quark pair. The vector boson is reconstructed through its decay into an electron or muon pair, or an electron or muon and a neutrino, or it is inferred from an imbalance in total transverse momentum. We use expected kinematic differences between events containing exotic Higgs bosons and those containing standard model Higgs bosons. The data were collected by the CDF experiment at the Tevatron proton-antiproton collider, operating at a center-of-mass energy of s=1.96TeV, and correspond to an integrated luminosity of 9.45fb-1. We exclude deviations from the predictions of the standard model with a Higgs boson of mass 125GeV/c2 at the level of 5 standard deviations, assuming signal strengths for exotic boson production equal to the prediction for the standard model Higgs boson, and set upper limits of approximately 30% relative to the standard model rate on the possible rate of production of each exotic state
Combined Tevatron upper limit on gg->H->W+W- and constraints on the Higgs boson mass in fourth-generation fermion models
Report number: FERMILAB-PUB-10-125-EWe combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg->H->W+W- in p=pbar collisions at the Fermilab Tevatron Collider at sqrt{s}=1.96 TeV. With 4.8 fb-1 of integrated luminosity analyzed at CDF and 5.4 fb-1 at D0, the 95% Confidence Level upper limit on \sigma(gg->H) x B(H->W+W-) is 1.75 pb at m_H=120 GeV, 0.38 pb at m_H=165 GeV, and 0.83 pb at m_H=200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% Confidence Level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.We combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg→H→W+W- in pp̅ collisions at the Fermilab Tevatron Collider at √s=1.96 TeV. With 4.8 fb-1 of integrated luminosity analyzed at CDF and 5.4 fb-1 at D0, the 95% confidence level upper limit on σ(gg→H)×B(H→W+W-) is 1.75 pb at mH=120 GeV, 0.38 pb at mH=165 GeV, and 0.83 pb at mH=200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% confidence level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.Peer reviewe
Measurement of the Top Pair Production Cross Section in the Dilepton Decay Channel in ppbar Collisions at sqrt s = 1.96 TeV
Submitted to Phys. Rev. DA measurement of the \ttbar production cross section in \ppbar collisions at = 1.96 TeV using events with two leptons, missing transverse energy, and jets is reported. The data were collected with the CDF II Detector. The result in a data sample corresponding to an integrated luminosity 2.8 fb is: \sigma_{\ttbar} = 6.27 0.73(stat) 0.63(syst) 0.39(lum) pb. for an assumed top mass of 175 GeV/.A measurement of the tt̅ production cross section in pp̅ collisions at √s=1.96 TeV using events with two leptons, missing transverse energy, and jets is reported. The data were collected with the CDF II detector. The result in a data sample corresponding to an integrated luminosity 2.8 fb-1 is σtt̅ =6.27±0.73(stat)±0.63(syst)±0.39(lum) pb. for an assumed top mass of 175 GeV/c2.Peer reviewe
- …