251 research outputs found

    Ideological biases in social sharing of online information about climate change

    Get PDF
    This is the final version. Available on open access from Public Library of Science via the DOI in this record. Data availability: The external data used in this study (Twitter posts, news articles) was publicly available when the study was carried out, but since the original data is owned by third parties we cannot publish the complete dataset without infringing Terms of Use (Twitter) or copyright (news articles). Instead we have made available lists of sources (tweet IDs, news article URLs) so that interested parties can reproduce our work. Full details of the dataset and availability are given below. Figshare repository (http://doi.org/10.6084/m9.figshare.13554590) has been created with the data required to reproduce our results.Exposure to media content is an important component of opinion formation around climate change. Online social media such as Twitter, the focus of this study, provide an avenue to study public engagement and digital media dissemination related to climate change. Sharing a link to an online article is an indicator of media engagement. Aggregated link-sharing forms a network structure which maps collective media engagement by the user population. Here we construct bipartite networks linking Twitter users to the web pages they shared, using a dataset of approximately 5.3 million English-language tweets by almost 2 million users during an eventful seven-week period centred on the announcement of the US withdrawal from the Paris Agreement on climate change. Community detection indicates that the observed information-sharing network can be partitioned into two weakly connected components, representing subsets of articles shared by a group of users. We characterise these partitions through analysis of web domains and text content from shared articles, finding them to be broadly described as a left-wing/environmentalist group and a right-wing/climate sceptic group. Correlation analysis shows a striking positive association between left/ right political ideology and environmentalist/sceptic climate ideology respectively. Looking at information-sharing over time, there is considerable turnover in the engaged user population and the articles that are shared, but the web domain sources and polarised network structure are relatively persistent. This study provides evidence that online sharing of news media content related to climate change is both polarised and politicised, with implications for opinion dynamics and public debate around this important societal challenge.Engineering and Physical Sciences Research Council (EPSRC)Economic and Social Research Council (ESRC)Natural Environment Research Council (NERC

    To Polarize or Not: Comparing Networks of News Consumption

    Get PDF
    This is the final version. Available via the link in this record.We use individual data on browsing histories combined with survey data to examine whether online news exposure exhibits signs of segregation and selectivity. By using online news behaviour combined with survey reports of attitudes, we can capture exposure to both traditional news sources and news shared via social media platforms. Most importantly, we can also examine what types of individuals (e.g. partisans, educated) are more likely to exhibit selective tendencies. We find, consistent with recent empirical work, the extent of segregation in exposure may be overstated. Furthermore, the degree of segregation and selectivity varies across groups that are defined by holding shared political preferences. For example, in the case of Brexit, those who supported the ‘Leave’ side were more selective in their news exposure. Our approach allows comparison of news exposure patterns by domains versus news exposure to topics. To our knowledge, this is the first analysis to allow this comparison.This work was supported by the Economic and Social Research Council ES/N012283/1 "Measuring Information Exposure in Dynamic and Dependent Networks (ExpoNet)

    Testing for Network and Spatial Autocorrelation

    Full text link
    Testing for dependence has been a well-established component of spatial statistical analyses for decades. In particular, several popular test statistics have desirable properties for testing for the presence of spatial autocorrelation in continuous variables. In this paper we propose two contributions to the literature on tests for autocorrelation. First, we propose a new test for autocorrelation in categorical variables. While some methods currently exist for assessing spatial autocorrelation in categorical variables, the most popular method is unwieldy, somewhat ad hoc, and fails to provide grounds for a single omnibus test. Second, we discuss the importance of testing for autocorrelation in data sampled from the nodes of a network, motivated by social network applications. We demonstrate that our proposed statistic for categorical variables can both be used in the spatial and network setting

    The fitness of African malaria vectors in the presence and limitation of host behaviour

    Get PDF
    <p>Background Host responses are important sources of selection upon the host species range of ectoparasites and phytophagous insects. However little is known about the role of host responses in defining the host species range of malaria vectors. This study aimed to estimate the relative importance of host behaviour to the feeding success and fitness of African malaria vectors, and assess its ability to predict their known host species preferences in nature.</p> <p>Methods Paired evaluations of the feeding success and fitness of African vectors Anopheles arabiensis and Anopheles gambiae s.s in the presence and limitation of host behaviour were conducted in a semi-field system (SFS) at Ifakara Health Institute, Tanzania. In one set of trials, mosquitoes were released within the SFS and allowed to forage overnight on a host that was free to exhibit natural behaviour in response to insect biting. In the other, mosquitoes were allowed to feed directly on from the skin surface of immobile hosts. The feeding success and subsequent fitness of vectors under these conditions were investigated on 6 host types (humans, calves, chickens, cows, dogs and goats) to assess whether physical movements of preferred host species (cattle for An. arabiensis, humans for An. gambiae s.s.) were less effective at preventing mosquito bites than those of common alternatives.</p> <p>Results Anopheles arabiensis generally had greater feeding success when applied directly to host skin than when foraging on unrestricted hosts (in five of six host species). However, An. gambiae s.s obtained blood meals from free and restrained hosts with similar success from most host types (four out of six). Overall, the blood meal size, oviposition rate, fecundity and post-feeding survival of mosquito vectors were significantly higher after feeding on hosts free to exhibit behaviour, than those who were immobilized during feeding trials.</p> <p>Conclusions Allowing hosts to move freely during exposure to mosquitoes was associated with moderate reductions in mosquito feeding success, but no detrimental impact to the subsequent fitness of mosquitoes that were able to feed upon them. This suggests that physical defensive behaviours exhibited by common host species including humans do not impose substantial fitness costs on African malaria vectors.</p&gt

    Mosquitoes Put the Brake on Arbovirus Evolution: Experimental Evolution Reveals Slower Mutation Accumulation in Mosquito Than Vertebrate Cells

    Get PDF
    Like other arthropod-borne viruses (arboviruses), mosquito-borne dengue virus (DENV) is maintained in an alternating cycle of replication in arthropod and vertebrate hosts. The trade-off hypothesis suggests that this alternation constrains DENV evolution because a fitness increase in one host usually diminishes fitness in the other. Moreover, the hypothesis predicts that releasing DENV from host alternation should facilitate adaptation. To test this prediction, DENV was serially passaged in either a single human cell line (Huh-7), a single mosquito cell line (C6/36), or in alternating passages between Huh-7 and C6/36 cells. After 10 passages, consensus mutations were identified and fitness was assayed by evaluating replication kinetics in both cell types as well as in a novel cell type (Vero) that was not utilized in any of the passage series. Viruses allowed to specialize in single host cell types exhibited fitness gains in the cell type in which they were passaged, but fitness losses in the bypassed cell type, and most alternating passages, exhibited fitness gains in both cell types. Interestingly, fitness gains were observed in the alternately passaged, cloned viruses, an observation that may be attributed to the acquisition of both host cell–specific and amphi-cell-specific adaptations or to recovery from the fitness losses due to the genetic bottleneck of biological cloning. Amino acid changes common to both passage series suggested convergent evolution to replication in cell culture via positive selection. However, intriguingly, mutations accumulated more rapidly in viruses passed in Huh-7 cells than in those passed in C6/36 cells or in alternation. These results support the hypothesis that releasing DENV from host alternation facilitates adaptation, but there is limited support for the hypothesis that such alternation necessitates a fitness trade-off. Moreover, these findings suggest that patterns of genetic evolution may differ between viruses replicating in mammalian and mosquito cells

    Experimental Passage of St. Louis Encephalitis Virus In Vivo in Mosquitoes and Chickens Reveals Evolutionarily Significant Virus Characteristics

    Get PDF
    St. Louis encephalitis virus (SLEV; Flaviviridae, flavivirus) was the major cause of epidemic flaviviral encephalitis in the U.S. prior to the introduction of West Nile virus (WNV) in 1999. However, outbreaks of SLEV have been significantly more limited then WNV in terms of levels of activity and geographic dispersal. One possible explanation for these variable levels of activity is that differences in the potential for each virus to adapt to its host cycle exist. The need for arboviruses to replicate in disparate hosts is thought to result in constraints on both evolution and host-specific adaptation. If cycling is the cause of genetic stability observed in nature and arboviruses lack host specialization, then sequential passage should result in both the accumulation of mutations and specialized viruses better suited for replication in that host. Previous studies suggest that WNV and SLEV differ in capacity for both genetic change and host specialization, and in the costs each accrues from specializing. In an attempt to clarify how selective pressures contribute to epidemiological patterns of WNV and SLEV, we evaluated mutant spectra size, consensus genetic change, and phenotypic changes for SLEV in vivo following 20 sequential passages via inoculation in either Culex pipiens mosquitoes or chickens. Results demonstrate that the capacity for genetic change is large for SLEV and that the size of the mutant spectrum is host-dependent using our passage methodology. Despite this, a general lack of consensus change resulted from passage in either host, a result that contrasts with the idea that constraints on evolution in nature result from host cycling alone. Results also suggest that a high level of adaptation to both hosts already exists, despite host cycling. A strain significantly more infectious in chickens did emerge from one lineage of chicken passage, yet other lineages and all mosquito passage strains did not display measurable host-specific fitness gains. In addition, increased infectivity in chickens did not decrease infectivity in mosquitoes, which further contrasts the concept of fitness trade-offs for arboviruses

    Host Alternation Is Necessary to Maintain the Genome Stability of Rift Valley Fever Virus

    Get PDF
    Arthropod-borne viruses are transmitted among vertebrate hosts by insect vectors. Unusually, Rift Valley fever virus (RVFV) can also be transmitted by direct contacts of animals/humans with infectious tissues. What are the molecular mechanisms and evolutionary events leading to adopt one mode of transmission rather than the other? Viral replication is implied to be different in a vertebrate host and an invertebrate host. The alternating host cycle tends to limit virus evolution by adopting a compromise fitness level for replication in both hosts. To test this hypothesis, we used a cell culture model system to study the evolution of RVFV. We found that freeing RVFV from alternating replication in mammalian and mosquito cells led to large deletions in the NSs gene carrying the virulence factor. Resulting NSs-truncated viruses were able to protect mice from a challenge with a virulent RVFV. Thus, in nature, virulence is likely maintained by continuous alternating passages between vertebrates and insects. Thereby, depending on the mode of transmission adopted, the evolution of RVFV will be of major importance to predict the outcome of outbreaks
    corecore