992 research outputs found
On the existence of energetic atoms in the upper atmosphere of exoplanet HD209458b
Stellar irradiation and particles forcing strongly affect the immediate
environment of extrasolar giant planets orbiting near their parent stars. Here,
we use far-ultraviolet emission spectra from HD209458 in the wavelength range
(1180-1710)A to bring new insight to the composition and energetic processes in
play in the gas nebula around the transiting planetary companion. In that
frame, we consider up-to-date atmospheric models of the giant exoplanet where
we implement non-thermal line broadening to simulate the impact on the transit
absorption of superthermal atoms (HI, OI, and CII) populating the upper layers
of the nebula. Our sensitivity study shows that for all existing models, a
significant line broadening is required for OI and probably for CII lines in
order to fit the observed transit absorptions. In that frame, we show that OI
and CII are preferentially heated compared to the background gas with effective
temperatures as large as T_{OI}/T_B~10 for OI and T_{CII}/T_B~5 for CII. By
contrast, the situation is much less clear for HI because several models could
fit the Lyman-a observations including either thermal HI in an atmosphere that
has a dayside vertical column [HI]~1.05x10^{21} cm^{-2}, or a less extended
thermal atmosphere but with hot HI atoms populating the upper layers of the
nebula. If the energetic HI atoms are either of stellar origin or populations
lost from the planet and energized in the outer layers of the nebula, our
finding is that most models should converge toward one hot population that has
an HI vertical column in the range [HI]_{hot}(2-4)x10^{13} cm^{-2} and an
effective temperature in the range T_{HI}(1-1.3)x10^6 K, but with a bulk
velocity that should be rather slow.Comment: 15 pages, 10 figures, corrected for typos, references remove
Ridge Formation and De-Spinning of Iapetus via an Impact-Generated Satellite
We present a scenario for building the equatorial ridge and de-spinning
Iapetus through an impact-generated disk and satellite. This impact puts debris
into orbit, forming a ring inside the Roche limit and a satellite outside. This
satellite rapidly pushes the ring material down to the surface of Iapetus, and
then itself tidally evolves outward, thereby helping to de-spin Iapetus. This
scenario can de-spin Iapetus an order of magnitude faster than when tides due
to Saturn act alone, almost independently of its interior geophysical
evolution. Eventually, the satellite is stripped from its orbit by Saturn. The
range of satellite and impactor masses required is compatible with the
estimated impact history of Iapetus.Comment: 19 pages, 3 figures; Icarus, in pres
The Dynamics of Stellar Coronae Harboring Hot-jupiters II. A Space Weather Event on A Hot-jupiter
We carry out a numerical simulation depicting the effects of a Coronal Mass
Ejection (CME) event on a close-in giant planet in an extrasolar system. We
drive the CME in a similar manner as in simulations of space weather events on
Earth. The simulation includes the planetary orbital motion, which leads to the
forming of a comet-like planetary magnetotail which is oriented almost
perpendicular to the direction of propagation of the CME. The combination of
this feature and the fact that the CME does not expand much by the time it
reaches the planet leads to a unique CME-magnetosphere interaction, where the
CME itself is highly affected by the presence of the planetary magnetosphere.
We find that the planet is well-shielded from CME penetration, even for a
relatively weak internal magnetic field. The planetary angular momentum loss
associated with such an event is negligible compared to the total planetary
angular momentum. We also find that the energy which is deposited in the
magnetosphere is much higher than in the case of the Earth, and our simulation
suggests there is a large-scale change in the orientation of the
magnetosphere-ionosphere current system during the CME event.Comment: 16 pages, 10 figures, accepted to Ap
OSSOS III - RESONANT TRANS-NEPTUNIAN POPULATIONS: CONSTRAINTS from the FIRST QUARTER of the OUTER SOLAR SYSTEM ORIGINS SURVEY
The first two observational sky "blocks" of the Outer Solar System Origins Survey (OSSOS) have significantly increased the number of well characterized observed trans-Neptunian objects (TNOs) in Neptune's mean motion resonances. We describe the 31 securely resonant TNOs detected by OSSOS so far, and we use them to independently verify the resonant population models from the Canada–France Ecliptic Plane Survey (CFEPS), with which we find broad agreement. We confirm that the 5:2 resonance is more populated than models of the outer solar system's dynamical history predict; our minimum population estimate shows that the high-eccentricity (e > 0.35) portion of the resonance is at least as populous as the 2:1 and possibly as populated as the 3:2 resonance. One OSSOS block was well suited for detecting objects trapped at low libration amplitudes in Neptune's 3:2 resonance, a population of interest in testing the origins of resonant TNOs. We detected three 3:2 objects with libration amplitudes below the cutoff modeled by CFEPS; OSSOS thus offers new constraints on this distribution. The OSSOS detections confirm that the 2:1 resonance has a dynamically colder inclination distribution than either the 3:2 or 5:2 resonances. Using the combined OSSOS and CFEPS 2:1 detections, we constrain the fraction of 2:1 objects in the symmetric mode of libration to 0.2–0.85; we also constrain the fraction of asymmetric librators in the leading island, which has been theoretically predicted to vary depending on Neptune's migration history, to be 0.05–0.8. Future OSSOS blocks will improve these constraints
Checkpoints are blind to replication restart and recombination intermediates that result in gross chromosomal rearrangements
Replication fork inactivation can be overcome by homologous recombination, but this can cause gross chromosomal rearrangements that subsequently missegregate at mitosis, driving further chromosome instability. It is unclear when the chromosome rearrangements are generated and whether individual replication problems or the resulting recombination intermediates delay the cell cycle. Here we have investigated checkpoint activation during HR-dependent replication restart using a site-specific replication fork-arrest system. Analysis during a single cell cycle shows that HR-dependent replication intermediates arise in S phase, shortly after replication arrest, and are resolved into acentric and dicentric chromosomes in G2. Despite this, cells progress into mitosis without delay. Neither the DNA damage nor the intra-S phase checkpoints are activated in the first cell cycle, demonstrating that these checkpoints are blind to replication and recombination intermediates as well as to rearranged chromosomes. The dicentrics form anaphase bridges that subsequently break, inducing checkpoint activation in the second cell cycle
Metabolism within the tumor microenvironment and its implication on cancer progression: an ongoing therapeutic target
Since reprogramming energy metabolism is considered a new hallmark of cancer, tumor metabolism is again in the spotlight of cancer research. Many studies have been carried out and many possible therapies have been developed in the last years. However, tumor cells are not alone. A series of extracellular components and stromal cells, such as endothelial cells, cancer-associated fibroblasts, tumor-associated macrophages and tumor-infiltrating T cells, surround tumor cells in the so-called tumor microenvironment. Metabolic features of these cells are being studied in deep in order to find relationships between metabolism within the tumor microenvironment and tumor progression. Moreover, it cannot be forgotten that tumor growth is able to modulate host metabolism and homeostasis, so that tumor microenvironment is not the whole story. Importantly, the metabolic switch in cancer is just a consequence of the flexibility and adaptability of metabolism and should not be surprising. Treatments of cancer patients with combined therapies including anti-tumor agents with those targeting stromal cell metabolism, anti-angiogenic drugs and/or immunotherapy are being developed as promising therapeutics.Mª Carmen Ocaña is recipient of a predoctoral FPU grant from the Spanish Ministry of Education, Culture and Sport. Supported by grants BIO2014-56092-R (MINECO and FEDER), P12-CTS-1507 (Andalusian Government and FEDER) and funds from group BIO-267 (Andalusian Government). The "CIBER de Enfermedades Raras" is an initiative from the ISCIII (Spain). The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript
The MSX1 allele 4 homozygous child exposed to smoking at periconception is most sensitive in developing nonsyndromic orofacial clefts
Nonsyndromic orofacial clefts (OFC) are common birth defects caused by certain genes interacting with environmental factors. Mutations and association studies indicate that the homeobox gene MSX1 plays a role in human clefting. In a Dutch case-control triad study (mother, father, and child), we investigated interactions between MSX1 and the parents' periconceptional lifestyle in relation to the risk of OFC in their offspring. We s
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Origin and Evolution of Saturn's Ring System
The origin and long-term evolution of Saturn's rings is still an unsolved
problem in modern planetary science. In this chapter we review the current
state of our knowledge on this long-standing question for the main rings (A,
Cassini Division, B, C), the F Ring, and the diffuse rings (E and G). During
the Voyager era, models of evolutionary processes affecting the rings on long
time scales (erosion, viscous spreading, accretion, ballistic transport, etc.)
had suggested that Saturn's rings are not older than 100 My. In addition,
Saturn's large system of diffuse rings has been thought to be the result of
material loss from one or more of Saturn's satellites. In the Cassini era, high
spatial and spectral resolution data have allowed progress to be made on some
of these questions. Discoveries such as the ''propellers'' in the A ring, the
shape of ring-embedded moonlets, the clumps in the F Ring, and Enceladus' plume
provide new constraints on evolutionary processes in Saturn's rings. At the
same time, advances in numerical simulations over the last 20 years have opened
the way to realistic models of the rings's fine scale structure, and progress
in our understanding of the formation of the Solar System provides a
better-defined historical context in which to understand ring formation. All
these elements have important implications for the origin and long-term
evolution of Saturn's rings. They strengthen the idea that Saturn's rings are
very dynamical and rapidly evolving, while new arguments suggest that the rings
could be older than previously believed, provided that they are regularly
renewed. Key evolutionary processes, timescales and possible scenarios for the
rings's origin are reviewed in the light of tComment: Chapter 17 of the book ''Saturn After Cassini-Huygens'' Saturn from
Cassini-Huygens, Dougherty, M.K.; Esposito, L.W.; Krimigis, S.M. (Ed.) (2009)
537-57
- …
