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ABSTRACT

The first two observational sky “blocks” of the Outer Solar System Origins Survey (OSSOS) have
significantly increased the number of well characterized observed trans-Neptunian objects (TNOs) in
Neptuneʼs mean motion resonances. We describe the 31 securely resonant TNOs detected by OSSOS so far,
and we use them to independently verify the resonant population models from the Canada–France Ecliptic
Plane Survey (CFEPS), with which we find broad agreement. We confirm that the 5:2 resonance is more
populated than models of the outer solar systemʼs dynamical history predict; our minimum population
estimate shows that the high-eccentricity (e > 0.35) portion of the resonance is at least as populous as the 2:1
and possibly as populated as the 3:2 resonance. One OSSOS block was well suited for detecting objects
trapped at low libration amplitudes in Neptuneʼs 3:2 resonance, a population of interest in testing the origins
of resonant TNOs. We detected three 3:2 objects with libration amplitudes below the cutoff modeled by
CFEPS; OSSOS thus offers new constraints on this distribution. The OSSOS detections confirm that the 2:1
resonance has a dynamically colder inclination distribution than either the 3:2 or 5:2 resonances. Using the
combined OSSOS and CFEPS 2:1 detections, we constrain the fraction of 2:1 objects in the symmetric mode
of libration to 0.2–0.85; we also constrain the fraction of asymmetric librators in the leading island, which has
been theoretically predicted to vary depending on Neptuneʼs migration history, to be 0.05–0.8. Future OSSOS
blocks will improve these constraints.

Key words: celestial mechanics – Kuiper Belt: general

1. INTRODUCTION

Trans-Neptunian objects (TNOs) are a dynamically diverse
population of minor planets in the outer solar system. A
striking feature of the observed TNOs is the significant
number of objects found in mean motion resonance with
Neptune. Neptuneʼs population of primordially captured
resonant objects provides an important constraint on solar
system formation and giant planet migration scenarios (e.g.,
Malhotra 1995; Chiang & Jordan 2002; Hahn & Malho-
tra 2005; Murray-Clay & Chiang 2005; Levison et al. 2008;
Morbidelli et al. 2008; Nesvorny 2015). But to understand
these constraints on the early solar system, we first need to
know the current resonant populations and orbital distribu-
tions. Identifying members of particular resonances is
straightforward (e.g., Chiang et al. 2003; Elliot et al. 2005;
Lykawka & Mukai 2007a; Gladman et al. 2008; Volk &
Malhotra 2011), but using the observed set of resonant TNOs
to infer the intrinsic number and distribution of resonant
objects is difficult due to complicated observational biases
induced by the resonant orbital dynamics (Kavelaars
et al. 2009; Gladman et al. 2012). Here, we present the first
set of 31 secure and 8 insecure resonant TNOs detected by the
Outer Solar System Origins Survey (OSSOS), which was

designed to produce detections with well characterized biases
(Bannister et al. 2016).
OSSOS is a large program on the Canada–France–Hawaii

Telescope surveying eight ∼21 deg2 fields, some near the
invariable plane and some at moderate latitudes from the
invariable plane, for TNOs down to a limiting magnitude of
∼24.5 in the r band. Observations began in spring 2013 and
will continue through early 2017 (see Bannister et al. 2016 for
a full description of OSSOS). Two of the primary science goals
for OSSOS are measuring the relative populations of Neptuneʼs
mean motion resonances and modeling the detailed orbital
distributions inside the resonances. The most current observa-
tional constraints on both the distributions and number of
TNOs in Neptuneʼs most prominent resonances come from the
results of the Canada France Ecliptic Plane Survey (CFEPS;
Gladman et al. 2012, hereafter referred to as G12). Population
estimates for some of Neptuneʼs resonances have also been
modeled based on the Deep Ecliptic Survey (DES; Adams
et al. 2014). OSSOS will offer an improvement on these
previous constraints because it is optimized for resonant
detections (especially for the 3:2 resonance) and includes off-
invariable plane blocks to better probe inclination distributions.
Here we report on the characterized resonant object

detections from the first two of the eight OSSOS observational
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blocks: 13AO10, an off-invariable plane block with a
characterization limit of mr = 24.39, and 13AE, a block
overlapping the ecliptic and invariable planes with a character-
ization limit of mr = 24.04. The characterization limit is the
faintest magnitude for which the detection efficiency of the
survey is well measured and all detected objects are tracked.
Figure 1 shows the location of the 13AO and 13AE blocks
relative to a model (G12) of Neptuneʼs 3:2 mean motion
resonance. The 13AO block is centered about 7° above the
ecliptic plane at the trailing ortho-Neptune point (90° in
longitude behind Neptune), and the 13AE block is at 0°–3°
ecliptic latitude ∼20° farther from Neptune. The full descrip-
tion of these blocks and the OSSOS observational methods are
detailed in Bannister et al. (2016). The 13AO block yielded 18
securely resonant TNOs out of 36 characterized detections, and
the 13AE block yielded 13 securely resonant TNOs out of 50
characterized detections; securely resonant objects are those
where the orbit fit uncertainties fall within the width of the
resonance (see Section 3 and Appendix B for a full list of
resonant OSSOS detections and discussion of the classification
procedure). The larger yield of resonant objects in the 13AO
block reflects both its favorable placement off the invariable
plane near the center of the 3:2 resonance (see Section 4), as
well as its slightly fainter characterization limit.

Our detections include secure 3:2, 5:2, 2:1, 7:3, and 7:4
resonant objects as well as insecure 5:3, 8:5, 18:11, 16:9, 15:8,
13:5, and 11:4 detections. The 3:2, 5:2, and 2:1 resonances
contain a sufficient number of detections to model their
populations. In this paper, we use these detections and the
surveyʼs known biases to place constraints on the number and
distribution of objects in these resonances. We then discus how
our constraints compare to the current theoretical understanding
of the origins and dynamics of these TNOs.

Current models propose three possible pathways by which
TNOs may be captured into resonance. First, they may have
been captured by Neptune as it smoothly migrated outward on
a roughly circular orbit (Malhotra 1993, 1995; Hahn &
Malhotra 2005), driven by interactions between Neptune and

a primordial planetesimal disk (Fernandez & Ip 1984). A disk
with the majority of its mass in planetesimals <100 km in
radius can produce migration smooth enough for resonance
capture (Murray-Clay & Chiang 2006), although the formation
of large planetesimals by the streaming instability (Youdin &
Goodman 2005; Johansen et al. 2007), if efficient, could render
planetesimal-driven migration too stochastic. Capture by a
smoothly migrating Neptune produces some objects that are
deeply embedded in the resonance, having resonant angles (see
Section 2) that librate with low amplitude (e.g., Chiang &
Jordan 2002). Given capture by smooth migration, the
distribution of libration centers (see Section 6) among 2:1
resonant objects serves as a speedometer, measuring the
timescale of Neptuneʼs primordial orbital evolution (Chiang
& Jordan 2002; Murray-Clay & Chiang 2005). Smooth
migration models predict that the 5:2 resonance captures fewer
objects than the 3:2 and 2:1 (Chiang et al. 2003; Hahn &
Malhotra 2005) and have difficulty producing the large
inclinations observed in the Kuiper Belt, though Nesvorny
(2015) recently suggest that transient resonant sticking and loss
during slow migration may resolve the latter difficulty.
Second, resonant objects could be the most stable remnants

of a dynamically excited population that filled phase space in
the outer solar system (Levison et al. 2008; Morbidelli
et al. 2008) as a result of early dynamical instability among
the giant planets (e.g., Thommes et al. 1999; Tsiganis
et al. 2005). The phase space volume of each resonance in
which objects can have small libration amplitudes is limited, so
this type of model preferentially produces larger amplitude
librators. Because Neptune spends time with high eccentricity,
such a scenario must be tuned to avoid disruption of the
observed dynamically unexcited “cold classical” TNOs (Baty-
gin et al. 2011; Dawson & Murray-Clay 2012; Wolff et al.
2012). Models of capture following dynamical instability may
produce high inclination TNOs more effectively than standard
smooth migration models, but they still under predict
observations (Levison et al. 2008). Like smooth migration,
these models do not predict a large 5:2 population compared to
the 3:2 and 2:1 populations (Levison et al. 2008, G12).
Third, resonant objects need not be primordial. Objects

currently scattering off of Neptune can be captured into
resonance temporarily (e.g., Lykawka & Mukai 2007a; Pike
et al. 2015). These marginally stable objects tend to have large
libration amplitudes and may be a productive source of objects
in distant resonances such as the 5:2.
Inspired by the differences between these three emplacement

mechanisms, we focus our dynamical modeling on the libration
amplitude distribution in the 3:2 resonance, the distribution of
libration centers in the 2:1 resonance, and the relative
abundance of objects in the 5:2 compared to the 3:2 and 2:1.
Finally, we emphasize that comparison of dynamical models of
resonance capture with the current resonant populations must
take into account the evolution of resonant orbits over the age
of the solar system. Numerous theoretical studies of the current
dynamics and stability of Neptuneʼs resonances (e.g., Gallardo
& Ferraz-Mello 1998; Yu & Tremaine 1999; Nesvorný &
Roig 2000, 2001; Tiscareno & Malhotra 2009) provide insight
into this evolution. We use these studies to inform our
constructed orbital models.
We provide a brief description of Neptuneʼs resonances as

well as our methods for modeling the resonant populations in
Section 2. A table of the OSSOS resonant TNO detections from

Figure 1. Top-down view of the solar system showing the locations of the
13AO and 13AE OSSOS blocks relative to the 3:2 resonance model from G12.
The 13AO block is off the invariable plane near the trailing ortho-Neptune
point and the 13AE block straddles the ecliptic and invariable planes 20°
farther from Neptune.

10 The 13A designation indicates that the discovery images for these blocks
were observed at opposition in CFHTʼs 2013 A semester.
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the 13AE and 13AO blocks and a description of how we
determine resonance membership is provided in Section 3. We
model the distribution and total number of 3:2 objects based on
the OSSOS detections in Section 4, demonstrating that this
population contains members with lower libration amplitudes
than previously seen. In Section 5, we model the 5:2 resonance
and confirm the unexpectedly large population of 5:2 resonant
objects reported in G12. Section 6 presents a model of the 2:1
resonance and provides an improved constraint on the relative
number of symmetric and asymmetric librators. We summarize
our population estimates and compare with previous results in
Section 7, and we comment on the populations of resonances
for which we have insecure detections in Section 8. Section 9
summarizes our key results.

2. BACKGROUND AND METHODS

After briefly introducing mean motion resonances
(Section 2.1), we summarize the challenges presented by
detection bias for measuring resonant populations (Section 2.2).
To circumvent these biases, we employ the OSSOS survey
simulator to test models of the resonant populations. The
survey simulator can only test models—it cannot produce them
—and we describe our choice of models in Section 2.3.

2.1. Neptune’s Mean Motion Resonances

Neptuneʼs mean motion resonances (which we call p:q
resonances, with p > q > 0 for external resonances) have
resonant angles, f, given by

( )
f l l v v= - - - - W - Wp q r r s s ,

1
tno N tno tno N N tno tno N N

where λ, ϖ, and Ω are the mean longitude, longitude of
perihelion, and longitude of ascending node (the subscripts tno
and N refer to the elements of a TNO and Neptune), and p, q,
rtno, rN, stno, and sN are integers with the constraint that p − q −
rtno− rN− stno− sN = 0. Objects in a mean motion resonance
have values of f that librate around a central value with an
amplitude defined as Af = (fmax − fmin)/2. For small
eccentricity (e) and inclination (i), the strength of the resonant
terms in the disturbing function are proportional to

( ) ( )e e i isin sinr r s s
tno N tno N

tno N tno N (Murray & Dermott 1999),
and resonances with small ∣ ∣-p q are generally stronger than
those with larger ∣ ∣-p q . TNOs typically have eccentricities
and inclinations much larger than Neptuneʼs, so we will ignore
resonant angles involving ϖN and ΩN. Likewise, the resonant
angles involving the inclination of the TNO are typically less
important than those involving the eccentricity because
inclination resonances are at least second order in isin tno.
Throughout the rest of this work, we will generally consider
this simplified resonance angle:

( ) ( )f l l v= - - -p q p q 2tno N tno

with a few exceptions noted in Table 1 and Section 8. In most
cases, such as in the 3:2 and 5:2 resonances, this resonant angle
librates around f = 180°. The topology of n:1 exterior
resonances allows for resonant orbits with more than one center
of libration; the 2:1 resonance has two so-called asymmetric
libration centers near f ∼ 60°–100° and f ∼ 260°–300° (the
exact centers are eccentricity-dependent) in addition to the

symmetric libration center at f = 180°. The libration of f
around specific values means that objects in resonance will
come to perihelion at specific offsets from Neptuneʼs current
mean longitude. When a TNO is at perihelion, its mean
anomaly (M) is 0, so λtno = M + ϖ = ϖ. Substituting this into
Equation (2) shows that at perihelion

( )v l l l
f

- = - =
q

. 3N tno N

Some resonances contain a subcomponent of objects also in
the Kozai resonance; these objects exhibit libration of the
argument of perihelion, ω = ϖ − Ω, in addition to libration of
the resonant angle f. This libration causes coupled variations in
e and i such that the quantity - e i1 cos2 is preserved.
Outside of mean motion resonances, libration of ω only occurs
at very large inclinations in the trans-Neptunian region
(Thomas & Morbidelli 1996), but inside mean motion
resonances Kozai libration can occur at much smaller
inclinations. In the 3:2 resonance, Kozai libration can occur
even at very low inclinations (Morbidelli et al. 1995) and a
significant number of observed 3:2 objects are known to be in
the Kozai resonance, including Pluto. The Kozai resonance has
also been observed for members of the 7:4, 5:3, and 2:1
resonances (Lykawka & Mukai 2007a). In the 3:2 resonance,
the libration of ω occurs around values of 90° and 270° with
typical amplitudes of 10°–70° and typical libration periods of
several megayears.

2.2. Detection Biases for Resonant Objects

In order to be detected by OSSOS, a TNO must be in the
surveyʼs field of view, brighter than the limiting magnitude of
the field, and moving at a rate of motion detectable by the
surveyʼs moving object detection pipeline (see Bannister
et al. 2016 for more details); because the OSSOS observing
strategy is optimized to detect the motion of objects at distances
between ∼9–300 AU, the first two criteria are the primary
source of detection biases for the resonant objects. The intrinsic
brightness distribution of TNOs with absolute magnitudes
brighter than Hr ∼ 8 is generally well modeled as an
exponential in H (discussed in Section 2.3), meaning there
are increasing numbers of objects at increasing H (decreasing
brightness). For a population of TNOs on eccentric orbits, this
means that most detections will be made for faint, large H
TNOs near their perihelion. Consequently, populations contain-
ing preferentially fainter objects must have preferentially
higher eccentricities to produce the same number of detections.
Furthermore, given that resonant TNOs come to perihelion at
preferred longitudes relative to Neptune (Equation (3)), this
means that the placement of the field in longitude relative to
Neptune produces biases toward and against certain reso-
nances. Objects in n:2 resonances librating about f = 180° will
preferentially come to perihelion at the ortho-Neptune points
(±90° away from Neptune); asymmetric n:1 librators will come
to perihelion at various longitudes ahead or behind Neptune,
depending on the value of the libration center (see Figure 1
in G12 for an illustration of perihelion locations for various
resonances). The OSSOS 13AO and 13AE blocks are ∼90° and
∼110° behind Neptune, which favors the detection of n:2
objects as well as asymmetric librators in the 2:1 resonanceʼs
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Table 1
Resonant Objects Detected in OSSOS 13AO and 13AE Blocks

Designations Res a e i d Af Mag H Comment
OSSOS MPC (au) (°) (au) (°) (r) (r)

o3e02 2013 GH137 3:2 39.441 ± 0.013 0.2282 13.468 31.1 -
+67 2

3 23.4 8.32 L

o3e03 2013 GE137 3:2 39.332 ± 0.028 0.257 3.866 31.1 -
+81 5

7 23.8 8.70 L

o3e04 2013 GJ137 3:2 39.466 ± 0.033 0.265 16.873 32.1 *-
+61 8

10 23.5 8.25 Kozai: 270° ± 40°

o3e06 2013 GL137 3:2 39.249 ± 0.027 0.199 10.440 34.4 -
+101 10

12 23.8 8.52 L

o3e07 2013 GG137 3:2 39.340 ± 0.019 0.136 2.931 35.2 -
+65 6

6 24.2 8.52 L

o3e08 2013 GD137 3:2 39.371 ± 0.005 0.1035 6.943 35.4 -
+69 1

2 23.7 8.45 L

o3e12 2013 GF137 3:2 39.557 ± 0.011 0.1567 14.680 37.3 -
+98 6

3 23.7 8.11 L

o3e41 2013 GK137 3:2 39.168 ± 0.015 0.178 9.879 45.6 -
+140 10

15 23.8 7.28 L

o3o02 2013 JC65 3:2 39.363 ± 0.018 0.2939 16.409 28.2 *-
+38 7

9 23.8 9.11 Kozai: 90° ± 50°

o3o03 2013 JH65 3:2 39.340 ± 0.030 0.286 7.533 29.5 -
+92 14

25 24.0 9.22 L

o3o04 2013 JG65 3:2 39.362 ± 0.015 0.2492 15.934 30.0 -
+34 6

8 23.7 8.79 Kozai: 90° ± 70°

o3o05 2013 JK65 3:2 39.411 ± 0.017 0.2564 20.045 30.1 *-
+10 4

8 24.3 9.44 L

o3o06 2013 JZ64 3:2 39.416 ± 0.015 0.2325 10.128 30.4 *-
+18 2

2 23.8 8.82 Kozai: 90° ± 60°

o3o08 2013 JE65 3:2 39.350 ± 0.041 0.278 8.048 31.7 *-
+42 10

10 24.3 9.15 Kozai: 90° ± 70°

o3o09 2013 JB65 3:2 39.403 ± 0.005 0.1889 24.898 32.0 *-
+26 1

2 23.4 8.13 L

o3o10 2013 JF65 3:2 39.393 ± 0.007 0.1764 8.315 32.5 16 ± 3 24.2 8.94 L
o3o12 2013 JA65 3:2 39.520 ± 0.009 0.1488 10.223 33.8 -

+75 8
3 24.2 8.78 L

o3o13 2013 JL65 3:2 39.282 ± 0.053 0.230 7.251 34.7 -
+72 32

24 24.4 8.79 L

o3o15 2013 JD65 3:2 39.371 ± 0.006 0.0937 13.015 35.7 -
+50 3

2 23.7 7.90 L

o3o20PD 2007 JF43 3:2 39.381 ± 0.071 0.186 15.080 38.3 *-
+48 5

19 21.2 5.27 L

o3o27 2013 JJ65 3:2 39.391 ± 0.063 0.256 19.814 41.0 -
+28 1

21 23.5 7.22 L

o3e05 2013 GW136 2:1 47.741 ± 0.015 0.3440 6.660 33.0 41 ± 2 22.7 7.42 asym. fc = 278°
o3e55 2013 GX136 2:1 48.011 ± 0.013 0.2519 1.100 37.0 157 ± 1 23.9 7.67 L
o3o18 2013 JE64 2:1 47.762 ± 0.059 0.284 8.335 36.1 *-

+21 1
8 23.6 7.94 asym. fc = 285°

o3o33 2013 JJ64 2:1 47.766 ± 0.033 0.082 7.650 41.0 -
+133 3

7 24.0 7.27 L

o3e09 2013 GY136 5:2 55.549 ± 0.031 0.4143 10.877 35.8 88 ± 10 23.1 7.32 L
o3e48 2013 GS136 5:2 55.629 ± 0.034 0.3855 6.978 35.5 122 ± 10 23.9 8.50 L
o3o07 2013 JF64 5:2 55.423 ± 0.014 0.4497 8.785 30.5 62 ± 9 24.1 8.97 L
o3o11 2013 JK64 5:2 55.238 ± 0.037 0.4081 11.078 33.1 81 ± 16 23.0 7.69 L
o3e19 2013 GR136 7:4 43.649 ± 0.007 0.0767 1.645 41.0 -

+88 11
7 23.8 7.20 L

o3o19 2013 JN64 7:3 53.032 ± 0.039 0.287 7.740 38.1 -
+128 16

28 24.1 7.96 L

o3e17 2013 GV136 8:5(I) 41.098 ± 0.007 0.035 7.452 40.6 L 24.3 7.85 insecure 90% of clones res for >5 Myr
o3o32 2013 JG64 18:11(IH) 41.740 ± 0.026 0.111 18.208 45.7 L 24.1 7.48 insecure, mixed argument best fit + 20% of

clones res f = 18λtno − 11λN − 5ϖtno − 2Ωtno

o3e52 2013 GT136 5:3(I) 42.370 ± 0.044 0.1540 12.112 48.9 L 24.1 7.11 insecure 40% of clones res for >5 Myr

o3o25 2013 JM64 5:3(IH) 43.352 ± 0.009 0.047 7.287 40.6 L 24.1 7.98 insecure 75% of clones res for >5 Myr
o3e13 2013 GU136 16:9(IH)o 44.14 ± 0.02 0.169 8.318 37.9 L 23.6 7.86 insecure 50% of clones res for >5 Myr

o3e49 2013 HR156 15:8(I) 45.73 ± 0.01 0.1890 20.412 38.1 -
+90 10

50 23.6 7.72 insecure, mixed argument 85%
of clones res f = 15λtno − 8λN − 5ϖtno − 2Ωtno

o3o29 2013 JL64 13:5(IH)o 56.8 ± 0.1 0.368 27.671 41.5 L 23.6 7.03 insecure 35% of clones res
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Table 1
(Continued)

Designations Res a e i d Af Mag H Comment
OSSOS MPC (au) (°) (au) (°) (r) (r)

o3o34 2013 JH64 11:4(I) 59.08 ± 0.25 0.382 13.731 50.8 ∼60 22.8 5.60 insecure 50% of clones res

Note. The uncertainties in a are the 1σ uncertainties from the Bernstein & Khushalani (2000) orbit fit; the listed values of e and i are printed with the appropriate number of significant figures. Note that the orbits above
are barycentric osculating elements. “I” after the resonant classification indicates an insecure classification and “H” indicates that the human operator overrode the classification codeʼs initial classification (in most
instances this is due to messy libration behavior that was not correctly identified as libration by the automated code). A superscript “o” (o) after the resonant classification indicates that some of the OSSOS astrometric
measurements were discarded for determining the orbit fit and classification because of poor astrometric conditions. The uncertainties in Af are obtained by generating 250 clones from the best-fit orbitʼs covariance
matrix, integrating these clones for 10 Myr, and determining the 1σ (68%) Af values from the clones’ Af distribution. An asterisk (*) following the uncertainty means that because of the asymmetric nature of the Af

distribution, the stated uncertainty is a hard upper or lower limit for Af. For insecure resonant objects, we list the percentage of clones that were resonant; a note of the percentage that are resonant for >5 Myr indicates
that the clones are only intermittently resonant. If all of an objectʼs 1σ clones are resonant we list the libration amplitude and uncertainties; in cases where the best-fit orbit results in well behaved libration for 10 Myr, we
list that single value of Af. We do not list libration amplitudes for objects whose clones intermittently librate; Af is not well defined in these cases but is presumably large. See Appendix B for a detailed discussion of the
classification system and orbit determination. The OSSOS designations of the objects indicate which block they were discovered in with “o3o” objects being discovered in the 13AO block and “o3e” objects discovered
in the 13AE block.
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trailing libration center. These biases for the 3:2, 5:2, and 2:1
resonances will be discussed in later sections.

Similarly, latitude placement of the observing blocks relative
to the ecliptic plane produces biases in inclination for TNOs.
The 13AE block (0°–3° ecliptic latitude) favors the detection of
low-i TNOs because these TNOs spend most of their time near
the ecliptic plane, while in the 13AO block it is not possible to
detect objects with inclinations smaller than the fieldʼs ecliptic
latitude of 6°–9°. For resonances such as the 3:2, the Kozai
subcomponent of the resonance introduces an additional
observational bias; the libration of ω means that Kozai resonant
objects come to perihelion at preferred ecliptic latitudes in
addition to preferred longitudes with respect to Neptune
(Equation (3)). The biases induced by the Kozai resonance
for the 3:2 population are discussed in detail by Lawler &
Gladman (2013). To account for these observational biases in
our modeling, we use the OSSOS survey simulator.

2.3. Modeling Neptune’s Resonances Using a Survey Simulator

We use the OSSOS detections of resonant objects combined
with the OSSOS survey simulator11 to construct and test
models of Neptuneʼs resonant populations. The survey
simulator is described in Bannister et al. (2016). Its premise
is as follows: given a procedure (i.e., model) for generating the
position and brightness of resonant objects on the sky, the
simulator repeatedly generates objects and then checks whether
they would have been detected by the survey. The simulator
stops when the desired number of simulated detections is
achieved. When the model agrees with observations, the sets of
real and simulated detected objects should have similar
absolute magnitudes and orbital properties. The intrinsic
number of objects in a resonance (i.e., a population estimate
for the input model) corresponds to the number of detected and
undetected objects the survey simulator had to generate (down
to a specified absolute magnitude H) in order to match the real
number of detections. We run the survey simulator many times
for each model with different random number generator seeds;
this allows us to build a distribution of population estimates
and a large sample of simulated detections. We then run
statistical tests to determine whether the model provides
simulated detections that are a good match to the real
detections; these tests are discussed later in this section as
well as in Appendix A.

A resonant objectʼs orbit is uniquely determined by its
semimajor axis, a, eccentricity, e, inclination, i, mean anomaly,
M = λ − ϖ, longitude of ascending node, Ω, resonance angle
f, and epoch, t, for the given value of M. Following G12, we
construct a set of models for each resonant population by
parameterizing the intrinsic distributions of a, e, i, f, and
absolute magnitude H. For each simulated object, the simulator
draws a, e, i, f, and H from these models and then constructs
the remaining orbital elements based on constraints from the
resonant condition (Equation (2)). We choose a uniformly
distributed random value for M to reflect that the objectʼs
specific position within its orbit is random in time, and we draw
a randomly from a uniform distribution spanning the
approximate resonance width. Appendix C provides the values
used for the resonance widths, though we note that our results
are not affected by this complication; because the resonance
widths are small, choosing a fixed a for each resonance would

produce equivalent results. For objects not experiencing Kozai
oscillations, the orientation of the orbitʼs plane relative to the
ecliptic plane is not coupled to the resonance, so we also
choose Ω randomly from a uniform distribution. For the 3:2
population, we include an additional parameter for the fraction
of the population in the Kozai resonance. Our procedure for
selecting the orbital elements of these objects is described in
Section 4 and Appendix C.1.
In Sections 4 through 6 and Appendix C we outline the exact

models used, but the general form of the parameterized models
in H, e, and i is the same for each resonance. We represent the
cumulative luminosity distribution as an exponential in H with
logarithmic slope α:

( ) ( )( )< = a -N H 10 , 4H H0

where N(<H) is the number of objects with magnitudes
between a reference H0 and H. This form models the absolute
magnitude distribution well for Hr  8 (e.g., Fraser &
Kavelaars 2009; Fuentes et al. 2009; Shankman et al. 2013;
Fraser et al. 2014, G12), but is not expected to work well for
intrinsically fainter objects (see Section 4.3).
We model the differential eccentricity distribution as a

Gaussian centered on ec with a width σe:

( ) ( ) ( )
s

µ -
-⎛

⎝⎜
⎞
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dN e
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e e
exp

2
, 5c

e

2

2

where dN(e) is the number of objects with eccentricities
between e and e + de. This is a convenient form that
acceptably describes populations with a typical eccentricity and
a roughly symmetrical eccentricity dispersion. Following
Brown (2001), we model the differential inclination distribu-
tion as a Gaussian with width σi multiplied by ( )isin :

( ) ( ) ( )
s

µ -
⎛
⎝⎜

⎞
⎠⎟

dN i

di
i

i
sin exp

2
, 6

i

2

2

where dN(i) is the number of objects with inclinations between
i and i + di.
The f distribution and treatment of the Kozai resonance are

specific to each resonance. However, for the 3:2 and 5:2
resonances, which have only one libration center f = 180°, the
f distribution may be uniquely specified by a distribution of
libration amplitudes, Af, about that center. We approximate the
time evolution of f for an individual object as the oscillation of
a simple harmonic oscillator with amplitude Af (Murray &
Dermott 1999). The instantaneous value of f for a simulated
object is then

( ) ( )f f p= + fA tsin 2 , 7center

where t is a random number distributed uniformly between 0
and 1. Small-amplitude libration is well approximated by a
simple harmonic oscillator, while for large Af the angular
evolution near the extrema of libration (where ḟ changes sign)
slows less in full numerical simulations than Equation (7)
implies. This means that compared to full numerical simula-
tions, Equation (7) slightly underestimates the likelihood that
objects will be observed 90° from Neptune (perihelion for
f = 180°) and slightly overestimates the likelihood of finding
objects at angles corresponding to the extrema of libration.
However, in Appendix C.1, we demonstrate that for all plutinos
observed by OSSOS, full simulations of the resonant angle11 https://github.com/OSSOS/SurveySimulator
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evolution do not deviate enough from Equation (7) to
meaningfully affect our results.

For resonances with a single libration center, we follow G12
and model the distribution of libration amplitudes as a triangle
that starts at Af,min, rises linearly to a central value Af,c and
then linearly falls to zero at the upper stability boundary for
Af,max (∼150° in the case of the 3:2; Tiscareno & Malhotra
2009). This triangle need not be symmetric. A triangular Af
distribution is not an arbitrary choice; theoretical studies of
resonant phase space and of the dynamical capture and the
evolution of plutinos often result in Af distributions that are
roughly triangular in shape (e.g., Nesvorný & Roig 2000;
Chiang & Jordan 2002; Lykawka & Mukai 2007a). This
outcome may be understood qualitatively as the result of
shrinking phase space volumes at small libration amplitudes
and increased dynamical instability at large amplitudes. For
example, plutinos with Af  120° are not stable on gigayear
timescales (Nesvorný & Roig 2000; Tiscareno &
Malhotra 2009).

When comparing real and simulated detections, we consider
the following observables for each object: absolute magnitude
H, eccentricity e, inclination i, heliocentric distance at detection
d, and libration amplitude Af (see Section 3 and Appendix B
for discussion of how Af is determined for the observed
objects). Because we are modeling each resonance separately,
we do not consider the semimajor axis distribution within the
resonance; the small variations in a for each object compared to
the exact resonant value do not affect observability, so the a
distribution is not a useful model test. For plutinos, we also
compare the observed and simulated fraction of objects in the
Kozai resonance (see Section 4.4). For resonances such as the
2:1 with symmetric and asymmetric libration centers, we
compare the observed and simulated fractions of objects in
each libration island (see Section 6). We do not compare the Ω,
M, or ϖ distributions of the simulated and real detections
because these angles are related by f. We also do not compare
the ω distributions because this angle is evenly distributed
except in the case of Kozai resonance.

For each model test, we have two goals: (1) to determine the
range of model parameters that provide acceptable matches
with the data, and (2) to determine the model parameters that
best fit the data. We note that our statistical approach is limited
by computational feasibility. Ideally, we would like to perform
a maximum likelihood calculation, but the nature of the
observational biases means we cannot analytically calculate the
detection probabilities; they must instead be numerically
determined by running the survey simulator. Given the wide
range of possible models for the populations we are
investigating, using the survey simulator to perform a
maximum likelihood calculation is not currently feasible (see
Appendix A for a detailed explanation).

The observational biases affecting the i and Af distributions
are relatively independent of each other and of the chosen H
and e distributions; to reduce the complexity of model testing,
we consider each of these observables separately as a one-
dimensional distribution. Following Petit et al. (2011) and G12,
we use the Anderson–Darling (AD) test to identify a range of
acceptable model parameters for these two distributions (goal 1
above). The test statistic—described in Appendix A—is a
weighted measure of the difference between two cumulative
distributions. For each set of model parameters, we determine
whether the set of i and Af values for the real detections could

be drawn from the simulated detections as follows: we generate
a large number of synthetic detections for each model and
calculate the AD statistic for the real detections compared to the
model distribution. We then determine the significance of that
value of the AD statistic for the N real objects by randomly
drawing subsamples of N synthetic detections from the model
detections and calculating the AD statistic for these subsamples
(i.e., bootstrapping). We reject a model if the AD statistic for
the real detections is larger than the AD statistic for 95% or
more of the model subsamples compared to the model itself.
This procedure yields our 95% confidence limits on the
acceptable parameters (σi and Af,c) for our orbital model. We
note that this bootstrapping is required to produce confidence
limits from the AD statistic because our distributions are not
Gaussian. The AD test is a model rejection test, so to get a most
probable values of σi and Af,c (goal 2), we must employ a
different procedure. We numerically generate one-dimensional
probability distributions in i and Af for each allowed value of
the parameters σi and Af,c, calculate the probability of detecting
the observed objects for each parameter value, and select the
values of σi and Af,c that maximize this probability. See
Appendix A for more details on how this calculation is done.
We note that a bootstrapping procedure to determine the
significance of the calculated probabilities of σi and Af,c yields
95% confidence limits on those values that are very similar to
the 95% confidence limits based on the AD statistic.
The observational biases that affect the H, e, and d

distributions are coupled such that the best parameters for the
H and e distributions cannot be determined independently of
each other (see discussions in Kavelaars et al. 2009 and G12).
In these cases, we calculate the one-dimensional AD statistic
for the observed H, e, and d distributions compared to the
modelʼs synthetic detections. Following Parker (2015) and
Alexandersen et al. (2014), instead of calculating the
significance of each of these statistics individually, we calculate
the significance of the sum of the observed distributionʼs H, e,
and d AD statistics relative to the same sum for the model
compared to itself. We reject combinations of α, σe, and ec for
which the summed AD statistic is larger than 95% of the
summed statistics for the subsets of synthetic detections. To
determine our preferred values of α, σe, and ec within those
95% confidence limits, we use the sum of their one-
dimensional χ-square values and select the α, σe, and ec that
minimizes this sum. These values will not necessarily be the
true, most probable values of α, σe, and ec for our
parameterized models because the one-dimensional χ-square
values do not account for how well the data fits the model in
three-dimensional H, e, and d space. Correctly determining the
most probable values of α, σe, and ec is computationally too
expensive for the wide range of parameter space we must
explore (see discussion in Appendix A).

3. OSSOS RESONANT DETECTIONS

We use the classification scheme outlined in Gladman et al.
(2008) to determine which OSSOS detections are resonant: a
best-fit orbit for each OSSOS detection is computed using the
Bernstein & Khushalani (2000) algorithm and then a search
around the best-fit orbit is done to find the maximum and
minimum acceptable semimajor axis orbits. Following Glad-
man et al. (2008), an orbit is deemed an acceptable fit to the
observations if it meets two conditions: (1) the worst residual
when comparing the observed astrometric position of the
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objects to the positions predicted by the orbit are not more than
1.5 times the worst residual for the best-fit orbit, and (2) the rms
residual is not more than 1.5 times the best-fit orbitʼs rms
residual. The best-fit, minimum a, and maximum a orbits are
integrated forward in time to look for resonant behavior
(defined as libration of a resonance angle described by
Equation (1)) on 107 year timescales; we check all potential
resonances with ∣ ∣ -p q 30 within 2% of the best-fit orbitʼs
semimajor axis. The resonant objects usually require more
precise orbit fits than non-resonant objects in order to achieve
secure classifications (meaning all three orbits are resonant)
because uncertainty in an objectʼs semimajor axis leads to
uncertainty in the libration amplitude. This classification
procedure yielded 21 secure 3:2 objects, 4 secure 2:1 objects,
4 secure 5:2 objects, 1 secure 7:4 object, and 1 secure 7:3
object. We also have two insecure 5:3 objects, and one insecure
detection in each of the 11:4, 8:5, 18:11, 16:9, 15:8, and 13:5
resonances. These objects are listed in Table 1 along with their
best-fit orbital parameters with uncertainties. The listed
uncertainty in a is the 1σ uncertainty calculated from the
Bernstein & Khushalani (2000) orbit fit covariance matrix; the
uncertainties in e and i are all small and rather than list them,
these parameters have been reported to the appropriate number
of significant figures. The uncertainty in the libration amplitude
is obtained by integrating 250 clones of each objectʼs best-fit
orbit (obtained from the covariance matrix), measuring their Af
distribution, and calculating the 1σ (68%) confidence range;
see Appendix B for a full discussion of the classification
scheme and determination of the Af distributions. Many of the
best-fit orbits’ Af distributions are asymmetric around the best-
fit orbitʼs Af, and in these cases the “1σ” uncertainties listed in
Table 1 actually represent hard upper or lower limits to the
value of Af (see Figure 15 in Appendix B); these instances are
marked in the table by asterisks. We note that in many cases the
orbit fit uncertainties, and especially the libration amplitude
uncertainties, are quite small even though the total arc length
on the observations is only ∼17 months; this is due to the
optimized observing schedule and accurate astrometry (Bann-
ister et al. 2016). The libration amplitude uncertainties listed in
Table 1 are comparable to or smaller than those determined for
other TNOs with significantly longer observational arcs (see,
for example, Lykawka & Mukai 2007a).

4. PLUTINOS: POPULATION MODEL
AND LIBRATION AMPLITUDES

There are 21 characterized 3:2 objects from the OSSOS
13AO and 13AE blocks (listed in Table 1). Our sample of 3:2
objects is sufficiently large to place some constraints on the
libration amplitude distribution of plutinos. This distribution is
of interest because it is likely to reflect plutino capture histories
(see Section 1). We begin by presenting maps illustrating the
sensitivity of the OSSOS 13AE/O blocks as a function of
phase space in the 3:2 resonance (Section 4.1). In the following
sections, we use the survey simulator to constrain a
parameterized model of the underlying 3:2 population. The
populationʼs i and Af distributions are modeled independently
(Section 4.2), while H and e must be constrained together
(Section 4.3). Section 4.4 presents constraints on the Kozai
fraction, and we summarize and report a population estimate
for the plutinos in Section 4.5.

4.1. Sensitivity Maps

Figure 2 shows how the sensitivity of the 13AO and 13AE
blocks to plutinos varies in e − Af and i − Af phase space with
the actual detections overplotted in white; the relative
visibilities are calculated using the survey simulator to simulate
detections from a 3:2 population with uniform underlying
distributions in the displayed ranges of e, i, and Af and a single
exponential H distribution with a slope α = 0.9 (see
Section 4.3). Of note in this figure is the surveyʼs sensitivity
to moderately inclined, low-Af plutinos due to the placement of
the 13AO block near the libration center of the resonance and
≈7° above the invariable plane. The low-Af plutino phase
space was not well explored by CFEPS, and G12 found that the
Af distribution of the plutinos could be acceptably modeled
with no Af < 20° component; this was also consistent with the
scarcity of observed plutinos in the Minor Planet Center
database with Af < 20° (Lykawka & Mukai 2007a report one
such object). OSSOS has detected three moderately inclined
plutinos with Af < 20° in the 13AO block, showing that the
low-Af part of the resonance is populated; we expect to further
constrain the low-inclination, low-Af populations in an
upcoming ecliptic block (15BD; see Bannister et al. 2016)

Figure 2. Relative visibility (color coded) of i–Af and e–Af plutino phase space for the OSSOS 13AO and 13AE blocks assuming uniform underlying distributions in
orbital elements and an exponential H-magnitude distribution with a slope α = 0.9. The white dots show the OSSOS detections. The fact that the real detections do not
cluster in the regions of high sensitivity simply indicates that the peaks of the intrinsic distributions lie at different values, and that (unsurprisingly) a uniform
underlying distribution for the population does not match the observations.
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pointed near the center of the 3:2 resonance on the other side of
Neptune.

4.2. Plutino i and fA Distributions

We use the 21 OSSOS detections and the survey simulator to
constrain acceptable models for the intrinsic plutino i and Af
distributions, as described in Section 2.3 and Appendix A. We
model the inclination distribution using Equation (6). The AD
test (Appendix A.2) identifies an acceptable match between the
inclinations of synthetic and real OSSOS detections for 8° � σi
� 21° at the 95% confidence level. This range is consistent
with previous observational estimates of the plutino inclination
width: σi = 8°–13° (Brown 2001, 1σ confidence range),
σi = 9°–13° (Gulbis et al. 2010, 1σ confidence range),
σi = 12°–24° (G12, 95% confidence range), and σi = 11°–21°
(Alexandersen et al. 2014, 95% confidence range). We use a
maximum likelihood approach (Appendix A.1) to determine a
best-fit value of σi = 12° for Equation (6), although the
probability distribution is quite flat in the range σi = 10°–13°.
We also tested the acceptability of a Gaussian inclination
distribution of the form

( ) ( ) ( ) ( )
s

µ -
-⎛

⎝⎜
⎞
⎠⎟N i i

i i
sin exp

2
, 8c

i

2

2

which was used by Gulbis et al. (2010). Using the AD test,
Equation (8) is a non-rejectable model for the plutino
inclination distribution at 95% confidence for ic < 12° with
σi ranging from 5° to 8° at ic = 12°. However, a maximum
likelihood comparison shows that based on the OSSOS
detections an offset Gaussian (Equation (8)) is not a better
description of the plutino inclination distribution than one
centered on 0° (Equation (6)), so we confine ourselves to the
single parameter model. These results depend only weakly on
the values for other model parameters, justifying our
independent modeling of the i distribution. Figure 3 displays,
as an example, the lack of coupling between the inclination and
absolute magnitude distributions; we show that the boot-
strapped AD probability for a range of σi values does not
significantly change for H distributions with slopes α = 0.65

and α = 1.05 (values near the extreme ends of the 95%
confidence limits for α that we find in Section 4.3).
As discussed in Section 2.3, we model the libration

amplitude distribution as a triangle starting at a lower limit,
Af,min, peaking at Af,c, and returning to zero at a maximum, Af,

max. The OSSOS plutinos have Af in the range ∼10°–140°,
which constrains our choice of Af,min and Af,max. We ran a
suite of models through the survey simulator with Af,min < 10°,
Af,max = 140°–170°, and Af,c = 20°–120°. We find that Af,

min = 0, Af,max = 155°, and Af,c = 75° provide the best match
to the observed libration amplitudes (maximum likelihood),
although the probability distribution in these parameters is
quite flat. Using the AD test, we cannot rule out any values of
Af,min or Af,max in our tested ranges. At 95% confidence, we
can constrain Af,c to be in the range 30°–110°. This range in
Af,c, although wide, represents a rigorous constraint on the
libration amplitude distribution; detections from the remaining
six OSSOS blocks should substantially improve this constraint.
Though multiple emplacement mechanisms could produce a
libration amplitude distribution with multiple components, a
single component model provides an acceptable fit to
current data.
We find a distribution of Af that, though mostly consistent

with the results of CFEPS (G12), contains additional objects
with lower libration amplitudes than previously reported.
Future OSSOS blocks will provide additional 3:2 detections
that will further constrain the Af distribution.

4.3. Plutino H and e Distributions

We ran a suite of survey simulations for plutino populations
with a wide range of parameters for the eccentricity and H
distributions described by Equations (5) and (4), respectively.
Because detection biases couple these distributions
(Section 2.2), we model them together. Our results are
presented in Figure 4. The best-fit model, as measured by our
summed chi-squared statistic (Appendix A.3), is α = 0.9,
ec = 0.175, and σe = 0.06, in agreement with the G12 results
and derived from an observational sample that is completely
independent from CFEPS.
The 21 OSSOS plutinos are acceptably modeled by a single

exponential in H with a slope a = -
+0.9 0.4

0.2. This is somewhat
surprising given that previous surveys have shown that the
dynamically excited TNO populations are not well modeled by
a single exponential. Recently, Fraser et al. (2014) found that
these populations can be modeled by a broken exponential H
distribution with a bright end slope α = 0.9 that breaks to a
faint end slope α ∼ 0.2 at Hr(break) ∼ 8. Shankman et al.
(2013, 2016) find that the scattering population shows evidence
of a divot (a deficit of objects rather than a simple change in
slope) in the H distribution near Hg ∼ 9, corresponding to Hr ∼
8.4. Alexandersen et al. (2014) rejects a single exponential H
distribution for the plutinos, finding evidence for either a divot
near Hr ∼ 8.5 or a break to a shallow slope at Hr < 8. Based on
just the OSSOS sample, we cannot rule out a single exponential
despite being sensitive to plutinos with Hr > 8 where the divot
or change in slope has been proposed.
To examine the conflicting conclusions between OSSOS and

the Alexandersen et al. (2014) results about the possibility of a
single exponential all the way down to Hr = 9.2, we generated
100 sets of 21 synthetic OSSOS detections for Alexandersen
et al. (2014)’s preferred divot model. We then tested how many
of these 100 synthetic “observed” data sets would be able to

Figure 3. Bootstrapped AD probability of various values of the inclination
width σi for two different H distributions. The rejectable range of σi (AD
probability below 0.05) does not change much when comparing two very
different H distributions.
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reject our best-fit single exponential H distribution. We find
that if the real plutinos follow Alexandersen et al. (2014)’s
nominal divot distribution, a sample of 21 detected in the two
OSSOS blocks would reject a single exponential ∼80% of the

time. So while we find no evidence of a transition in the
OSSOS sample, this could just be due to our small sample size.
We note, however, that the placement of the OSSOS blocks
means we were most sensitive to large H objects with low

Figure 4. Color maps: goodness-of-fit for various plutino model parameters as measured by a summed χ2 statistic for the e, H, and d distributions. White lines:
rejected parameter values using the summed AD statistic for the e, H, and d distributions at the 99% confidence level (solid white curves) and the 95% confidence level
(dashed white curves). Our favored model parameters (based on minimizing the summed χ2 statistic) are shown by the black dots. Each panel is a two-dimensional cut
in our three-dimensional parameter space search. For each panel, we fix one parameter at its favored value and show the goodness-of fit map for the other two
parameters (for example, in the top panel, α is fixed at 0.9 to show the allowed range in σe and ec for that value of α).

Figure 5. Left panel: the black line shows the relative visibility of plutinos as a function of H for the OSSOS 13AO and 13AE blocks assuming uniform underlying
distributions. The gray histogram shows the actual number of detected plutinos as a function of H. Right panel: color coded relative visibility of plutinos as a function
of both H and Af for the OSSOS 13AO and 13AE blocks assuming uniform underlying distributions. The white dots show the OSSOS plutino detections. The
sensitivity to 60° libration amplitude is due to the location of 13AE block, which favors detection of plutinos with Af somewhat larger than 40°.
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libration amplitudes, which differs from Alexandersen et al.
(2014)’s survey. Figure 5 shows the detectability of plutinos in
the 13AO and 13AE blocks as a function of Hr and of Af and
Hr. Many of the large H OSSOS objects have Af < 40°, a
previously sparsely observed part of the resonanceʼs phase
space. It would be very interesting if the low-Af plutinos have
a different H distribution than the larger Af plutinos; Lykawka
& Mukai (2007a) found some evidence for this in their analysis
of the observed plutinos. Different dynamical capture mechan-
isms populate different parts of the resonance, so it is not
impossible that the low and high Af plutinos were captured
from different parts of the primordial TNO population. Better
statistics afforded by the upcoming OSSOS blocks will further
test this idea.

4.4. Plutino Kozai Fraction

Finally, we model the fraction of plutinos that are also in the
Kozai resonance. Our data set of 21 plutinos contains 5 Kozai
oscillators. Within the survey simulator, these objects are
generated separately from the other plutinos because they
occupy a distinct phase space within the resonance. To account
for this, we follow the procedure outlined in G12 and Lawler &
Gladman (2013) which uses an approximate Kozai resonant
Hamiltonian (Wan & Huang 2007) to select values of e, i, and
ω that correspond to Kozai libration of various amplitudes
within the resonance. A Kozai plutinoʼs H and Af are selected
the same way as for the non-Kozai plutinos (we assume that
Kozai and non-Kozai plutinos share a single libration
amplitude distribution, which is sufficient to model current
data). Our procedure for choosing the other orbital parameters
for Kozai plutinos is described in Appendix C.1.

We ran a suite of survey simulations varying the intrinsic
Kozai fraction ( fkoz) from 0 to 1 to determine the probability of
detecting 5 Kozai plutinos in a sample of 21 plutino detections
for each value of fkoz. To reproduce the five OSSOS 3:2 Kozai
plutinos more than 5% of the time, we find that the Kozai
fraction must be 0.08–0.35 ( fkoz = 0.05–0.45 at 99%
confidence). An intrinsic Kozai fraction of 0.2 has the highest
probability of reproducing the OSSOS detections. This is in
reasonable agreement with the fkoz = 0.1 (<0.33 at 95%
confidence) determined by CFEPS (G12). As discussed in
Lawler & Gladman (2013), different resonant capture scenarios
predict different values for fkoz; the first two OSSOS blocks
have already narrowed the range of allowable fkoz compared to
the CFEPS results, and we expect the future blocks to provide
an even better determination of the intrinsic Kozai fraction.

4.5. Plutino Population Estimate and Summary

Our nominal best-fit values for the parameters in our plutino
model are α = 0.9, ec = 0.175, σe = 0.06, σi = 12°, fkoz = 0.2,
and a triangular Af distribution that goes from 0° to 155° with a
peak at 75°. Figure 6 shows this distribution compared to the
actual OSSOS detections; there is generally good agreement in
the one-dimensional distributions in i, e, Af, Hr, and distance at
discovery between the synthetic detections and the actual
OSSOS detections. Using our best-fit model, we estimate that
the 3:2 resonance contains a population of -

+8000 4000
4700 objects

with Hr < 8.66 (see Section 7 for more details). The
independent OSSOS data sample yields best-fit orbital
parameters and a total population estimate for the plutinos that
are in good agreement with the CFEPS results (G12).

5. THE SURPRISINGLY POPULOUS 5:2 RESONANCE

One of the surprising results from CFEPS was that the
population of the 5:2 resonance was found to be nearly as
large as the population of the 3:2 resonance (G12). This is
unexpected because planetary migration models do not
predict efficient capture into the 5:2 resonance (e.g., Chiang
& Jordan 2002) and capture following dynamical instability
(e.g., Levison et al. 2008) likewise predicts a smaller 5:2
population relative to the 3:2. So far, OSSOS has detected
four objects in the 5:2 resonance at a = 55.5 AU. Given that
the libration behavior of 5:2 resonant objects is similar to that
of the 3:2, where objects at exact resonance come to
perihelion at the ortho-Neptune points, the 13AO and 13AE
blocks show a similar visibility profile for the 5:2 resonance
(Figure 7) as for the plutinos (Figure 2). The major difference
between these two resonances is the much lower sensitivity to
low-eccentricity 5:2 objects because it is a more distant
resonance. The right panel of Figure 7 shows contour lines in
eccentricity below which the probability of observing an
object from an eccentricity distribution uniform in the range
0–0.5 drops below 5% and 1% assuming an underlying H
distribution with a slope α = 0.9; we do not expect a uniform
eccentricity distribution, but this does demonstrate that
OSSOS is not particularly sensitive to 5:2 objects
with e < 0.3.
We use a parameterized orbital model for the 5:2 resonance

identical to that for the non-Kozai plutinos. We ran a suite of
survey simulations to place limits on the parameterized i, e, and
H distributions. Given the small number of detections, we used
a single, triangular Af distribution that ranged from 0° to 140°
with a peak at 75°; this provided a statistically adequate
representation of the OSSOS 5:2 detections and is similar to the
Af distribution used in G12 for this population. The upper limit
for libration in the 5:2 resonance (from both observations and
numerical integrations) appears to be Af ∼ 155° (Lykawka &
Mukai 2007a, 2007b), but the extension of the Af distribution
above 140° is not necessary to describe the OSSOS 5:2
detections; with the future OSSOS blocks, we expect more 5:2
detections and will explore the upper limit for the Af
distribution.
We find the inclination distribution can be modeled using

Equation (6) with a most probable (maximum likelihood) width
of σi = 10°. At 95% confidence using the AD statistic, the
width ranges from 6° to 20° in agreement with the width of
σi = 15° for the 5:2 from G12.
As discussed for the plutinos, the e and H distributions

cannot be determined independently from each other. We find
that a single exponential is an adequate model for the four
OSSOS detections; reasonable eccentricity distributions can
provide acceptable matches for the observed e, H, and
heliocentric distance at discovery for slopes in the range
0.6 < α < 1.1 with no strongly preferred value (based on a
summed chi-square statistic). With only four detections, it is
not surprising that we do not have a strong constraint on α.
Assuming the 5:2 population has the same H distribution as the
plutinos, we can constrain the allowable range of eccentricity
distribution parameters (Equation (5)). Figure 8 shows the
significance levels of the summed AD statistic for the d, e, and
H distributions of the four OSSOS 5:2 detections compared to
simulated detections for a range of ec and σe values. Because
the observed 5:2 objects have a narrow range in e of 0.39–0.45,
the least rejectable eccentricity distribution has ec = 0.4 and
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σe = 0.025. However, this is not likely to be a good
representation of the true 5:2 eccentricity distribution; there
are 5:2 objects with e ∼ 0.3 in the MPC database (also listed in
Lykawka & Mukai 2007a; Gladman et al. 2008; Adams
et al. 2014), which invalidates such a strongly peaked e
distribution centered at ec = 0.4. As Figure 8 shows, the
OSSOS detections do not rule out e distributions with smaller
ec and larger σe, a result that is consistent with the findings
of G12; however, the insensitivity of the OSSOS 2013AO/E
blocks to 5:2 objects with e  0.3 makes this distribution

difficult to constrain. If we limit our model to e > 0.35, we find
that the OSSOS observations can be adequately reproduced by
a uniform eccentricity distribution in the range e = 0.35–0.45.
We use this restricted e range to model the total intrinsic
population of the 5:2 with the understanding that this makes
our population estimate a lower limit because we know that the
e < 0.35 region is occupied. For our best-fit model applied to
OSSOS data alone, we find that the 5:2 resonance contains

-
+5700 4000

7300 objects with Hr < 8.66 and e > 0.35 (see Section 7
for more details).

Figure 6. Cumulative one-dimensional distributions in i, e, Af, Hr, and distance at discovery for the observed 13AO and 13AE block plutinos (red dots), the intrinsic
plutino population for our nominal plutino model (gray dashed lines), and for the synthetic detections from our nominal plutino model (black lines). The differences
between the intrinsic models and the synthetic detections show the effects of the observational biases.
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6. NEW CONSTRAINTS ON THE SYMMETRIC TO
ASYMMETRIC RATIO FOR THE 2:1 RESONANCE

The 2:1 is the strongest of the n:1 resonances. In the 2:1,
symmetric librators have a resonant angle f (see Section 2)
which, like that for all 3:2 objects, librates about 180°.
Asymmetric librators instead librate about a center near f ∼
60°–100° or f ∼ 260°–300°. Nesvorný & Roig (2001) studied
the current dynamics of the 2:1 resonance, determining how the
libration centers and amplitudes change with eccentricity and
how the stability of the resonance is affected by inclination.
Tiscareno & Malhotra (2009) also studied the stability of 2:1
phase space. Determining how the current 2:1 resonant objects
are split between the symmetric, leading asymmetric, and
trailing asymmetric libration islands is of particular interest for
determining how this resonance became populated; Chiang &
Jordan (2002) and Murray-Clay & Chiang (2005) demonstrated
that Neptuneʼs migration speed affects the probability of
capture into the leading or trailing asymmetric libration centers,
with higher speed migration favoring the trailing island. In this
section, we describe how we use the first two OSSOS blocks to
constrain the fraction of symmetric 2:1 librators. We then use
the combined OSSOS and CFEPS observations to provide a
well characterized constraint on the trailing-to-leading ratio in

the 2:1 resonance; as we discuss later, the combined data set is
used for this constraint because the first two OSSOS blocks
were only sensitive to trailing 2:1 asymmetric librators.
Because of the more complicated phase space of the 2:1

resonance compared to the 3:2 or 5:2 resonances, we do not
have a simple parameterized Af distribution for the 2:1. Both
the libration centers and the allowable range of Af for the
asymmetric islands are e-dependent. We also only have four
OSSOS detections, so an overly complicated model is not
warranted. We base our 2:1 model on the results of Nesvorný
& Roig (2001), who published a plot of libration centers and
maxiumum libration amplitudes as a function of e. To generate
a 2:1 population, we first decide if an object is symmetric or
asymmetric. If it is symmetric, we select e from a uniform
range 0.05–0.35 and Af from a uniform range 135°–165°; these
ranges correspond to the regions of relatively stable libration
found in theoretical and numerical experiments (Nesvorný &
Roig 2001; Chiang & Jordan 2002; Tiscareno & Malho-
tra 2009). For asymmetric librators, we select e uniformly from
0.1 to 0.4. For the chosen value of e, we choose the libration
center from Nesvorný & Roig (2001) and then assign a
libration amplitude uniformly from 0 − Af,max. The inclina-
tions are randomly selected from a Gaussian inclination
distribution described by Equation (6).
From just the four OSSOS detections, we find that the above

simplified model for the 2:1 resonance (only slightly modified
from the CFEPS 2:1 model of G12) is consistent with the
observations. We find that the inclination distribution width
must be σi < 8° at 95% confidence with a most probable value
of 4°, independently confirming G12ʼs conclusion that the 2:1
population is significantly colder in inclination than either the
3:2 or the 5:2. We note that there are a few observed 2:1 objects
in the MPC database with inclinations in the range ∼20°–30°.
Most of these high inclination 2:1 objects appear to be large
amplitude symmetric librators (see, for example, Table 1 in
Lykawka & Mukai 2007a). Tiscareno & Malhotra (2009)
showed that high inclination symmetric librators are not stable
on gigayear timescales; this perhaps indicates that these
observed large inclination 2:1 objects (a population not yet
detected by OSSOS) are only temporarily stuck to the 2:1
resonance rather than primordial members. We will explore the
possibility of a population of higher inclination temporary 2:1

Figure 7. Relative visibility (color coded) of i–Af and e–Af 5:2 phase space for the OSSOS 13AO and 13AE blocks assuming uniform underlying distributions. The
white dots show the OSSOS detections. In the right panel, the solid and dashed lines show the eccentricities below which visibility drops to <1% and <5%,
respectively, for an H distribution with α = 0.9. As in Figure 2, the fact that the real detections do not cluster in the regions of high sensitivity simply indicates that a
uniform underlying distribution in e, i, and Af does not match the observations.

Figure 8. AD rejectability of a 5:2 eccentricity distribution with width σe and
center ec assuming an underlying Hr distribution of slope 0.9. The lines indicate
values rejectable at 99% (solid white) and 95% (dashed white) confidence.
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objects in addition to the low-i (presumably primordial) 2:1
population with future OSSOS observations.

Based on the fact that half of the OSSOS 2:1 objects are
symmetric librators, we can place a weak limit on the intrinsic
fraction of symmetric 2:1 objects, fs. For our parameterized
model of the 2:1 resonance, we tested intrinsic symmetric
fractions ranging from 0.05 to 0.95. For each tested fs we can
determine the probability of drawing four synthetic observed
objects with a fs,obs � 0.5. This probability allows us to rule out
fs � 0.05 at the 99% confidence level and fs � 0.1 and fs � 0.95
at the 95% confidence level.

To further constrain the allowable range of fs, we repeat this
calculation with the nine combined CFEPS and OSSOS 2:1
detections while additionally considering the division of the
asymmetric librators between the leading and trailing libration
centers. The two OSSOS blocks both point toward the trailing
libration center, and thus both are fairly insensitive to the
leading/trailing fraction. This is evident in Figure 9, which
shows the relative visibility of all three libration islands in e–Af
and i–Af phase space; the probability of detecting a leading
asymmetric 2:1 object in the OSSOS 13AO or 13AE blocks is
nearly 0. Additional OSSOS blocks will cover the leading
center, but for now we can use the CFEPS detections in
addition to the OSSOS 13AO and 13AE block detections
because CFEPS covered both libration centers (G12). Of the
nine combined OSSOS and CFEPS 2:1 detections, three are
symmetric librators and six asymmetric; five of the asymmetric
detections are in the trailing libration island and one is in the
leading island. We ran a suite of OSSOS+CFEPS survey
simulations for a wide range of intrinsic symmetric fractions,
0.05 < fs < 0.95, and a wide range of the intrinsic fraction of
asymmetric librators in the leading libration center,
0 < flead < 0.95. The left panel of Figure 10 shows the
probability of drawing a sample from the synthetic detections
for each combination of fs and flead that matches the observed
symmetric fraction, fs,obs = 1/3; the right panel shows the

probability of drawing a sample with fs,obs = 1/3 and flead,
obs = 1/6. Using the combined OSSOS and CFEPS detections,
we have the constraint that 0.1 < fs < 0.9 at the 99%
confidence level and 0.2 < fs < 0.85 at the 95% confidence
level; the fraction of asymmetric objects in the leading libration
center is constrained to be flead < 0.9 at the 99% confidence
level and 0.05 < flead < 0.8 at the 95% confidence level.
To obtain a population estimate for the 2:1 resonance, we

assume that the population is evenly split between symmetric
and asymmetric librators and that the asymmetric librators are
evenly split between the leading and trailing islands ( fs = 0.5
and flead = 0.5); we also assume the H distribution has α = 0.9.
Using this model and just the OSSOS data, the 2:1 resonance is
estimated to contain -

+5200 4000
9000 objects with Hr < 8.66 (see

Section 7 for more details).

7. POPULATION ESTIMATES

We have modeled the 3:2, 5:2, and 2:1 resonances based
on the first set of OSSOS detections. From this independent
data set, we find that the orbital and H distributions for these
resonances are consistent with those found by CFEPS (G12).
Taking our nominal orbital models based on the OSSOS
detections, we can construct population estimates for these
three resonances. To do this, we run 104 instances of the
survey simulator for our orbital models of each resonance and
determine how many objects with Hr less than some limiting
value must be generated to match the 21 plutino detections,
the four 2:1 detections, and the four 5:2 detections in the
13AO and 13AE blocks. To facilitate comparison to the
population estimates from CFEPS, we choose a limiting
magnitude Hr = 8.66 to compare to their Hg = 9.16. This
assumes the resonant populations have colors g− r = 0.5,
which matches the value (within photometric uncertainties)
for the plutino population (Alexandersen et al. 2014) based
on the g − r colors of the CFEPS 3:2 objects (Petit
et al. 2011); there is an ongoing Gemini program (Fraser

Figure 9. Relative visibility (color coded) of e–Af and i–Af 2:1 phase space for the OSSOS 13AO and 13AE blocks assuming an even split between the leading
asymmetric, trailing asymmetric, and symmetric libration centers as well as uniform e, i, and Af distributions within the resonant phase space of all three libration
islands. The white dots show the OSSOS detections.
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et al. 2015) that will quantify the colors for the OSSOS
mr < 23.5 resonant objects, so in future analyses this color
assumption might be improved. Our population estimates are
listed in Table 2 and shown in Figure 11. All three population
estimates overlap with the 95% confidence bounds on the
CFEPS (G12) estimates, although our median number of
plutinos and our lower limit for the 5:2 population are both
smaller than the CFEPS estimates and our 2:1 population is
slightly larger. Our 2:1 population estimate is much more
uncertain than the CFEPS estimate despite the roughly equal
numbers of OSSOS and CFEPS 2:1 detections; this is due to
the restricted longitude range of the first two OSSOS blocks
(both trailing Neptune) compared to the wider longitude
ranges of the CFEPS observations.

We can also compare our population estimates to those
from the DES given in Adams et al. (2014). The DES
observations were done in the VR filter, so we must assume a
value of VR − r in order to compare the population estimates.
Adams et al. (2014) assumed g − VR = 0.1 for comparing the
DES population estimates to the CFEPS population estimates
and found that the two sets of population estimates for the 3:2
population were discrepant. However, we find that g −
VR = 0.4 is a better estimate of the color conversion for the
resonant objects based on a comparison of H values in the
two color filters for resonant objects observed by both
surveys (see Appendix D). Using the measured g − VR = 0.4
color rather than g − VR = 0.1 erases the discrepancy
between the DES and CFEPS 3:2 population estimates

reported by Adams et al. (2014). Figure 12 shows the data
from Figure 1 in Adams et al. (2014) along with the resonant
population estimates from Table 3 in G12 and Table 2 of this
work (taking g − VR = 0.4 and g− r = 0.5). We find that the
CFEPS and OSSOS population estimates for the 3:2, 5:2, and
2:1 resonances are in very good agreement with the
intrinsically faint (large H) DES population estimate for the
3:2 resonance and overlap with the DES 2:1 and 5:2
population estimates.
Our median population estimates imply that the intrinsic

ratio of 3:2/5:2/2:1 objects is 1.5/1.1/1, compared to 3.5/3.2/
1 from the CFEPS population estimates (G12) and 1.4/0.7/1
from the DES population estimates (Adams et al. 2014; note
that because the color conversion is assumed to be the same for
all the resonances, the DES population ratios are independent
of the assumed g − VR color). Combining the OSSOS and
CFEPS detections to obtain population estimates for our
nominal resonance models (also listed in Table 2 and shown in
Figure 11), we find a ratio of 2.5/2/1. The uncertainties in our
population estimates from just the OSSOS data are currently
too large to conclusively determine whether the 5:2 is more
populated than the 2:1 or as populated as the 3:2, but the
OSSOS detections are consistent with a large population in the
5:2 resonance. Additionally, we have used an artificially
restricted eccentricity range for the 5:2 resonance due to our
insensitivity to e < 0.35 objects, so the real 5:2 population is
likely to be larger than our estimate.

Figure 10. Color maps: probability distributions comparing the simulated 2:1 detections to the combined CFEPS and OSSOS 2:1 detections. Left: the probability of
having three symmetric librators in a sample of nine 2:1 objects randomly drawn from the survey simulatorʼs synthetic detections as a function of the simulated 2:1
populationʼs intrinsic fraction of symmetric librators (y-axis) and intrinsic fraction of asymmetric 2:1 objects librating around the leading libration center (x-axis).
Right: the probability of drawing a sample of nine 2:1 objects with three symmetric librators, five trailing asymmetric librators, and one leading asymmetric librators
from the simulated detections. In both panels, the rejected regions for the probability distributions are overplotted as solid white curves (99% confidence level) and
dashed white curves (95% confidence level).

Table 2
Population Estimates

Res e distribution i distribution 13AO/E blocks 13AO/E + CFEPS
N(Hr < 8.66) N(Hr < 8.66)

3:2 Equation (5), =e 0.175c , σe = 0.06 Equation (6), σi = 12° -
+8000 4000

4700
-
+10000 3000

3600

5:2 uniform e = 0.35–0.45 Equation (6), σi = 11° -
+5700 4000

7300
-
+8500 4700

7500

2:1 sym: uniform e = 0.05–0.35 Equation (6), σi = 4° -
+5200 4000

9000
-
+4000 2000

2500

asym: uniform e = 0.1–0.4

Note. Population estimates for the resonances with multiple secure OSSOS detections. The population estimate is the median number of Hr < 8.66 objects the survey
simulator had to generate using our nominal models (described in Sections 4–6) to produce the observed number of detections with 95% limits stated. The limit of
Hr = 8.66 is equivalent to the limit of Hg = 9.16 used in G12 assuming an average color for the resonant objects of g − r = 0.5.
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8. OTHER RESONANCES

In the OSSOS 13AO and 13AE blocks there are detections in
nine other resonances: the 8:5, 18:11, 5:3, 16:9, 15:8, 7:3, 7:4,
13:5, and 11:4 resonances. Of these detections, only the 7:4 and
7:3 detections are securely resonant as defined by the Gladman
et al. (2008) classification scheme. We integrated many clones
of each insecure resonant detection to determine the probability
that the objects are resonant; these probabilities are listed in
Table 1. Two of the insecure resonant detections have best-fit
orbits that show libration of a mixed resonant argument.
OSSOS object o3o32 shows libration of the angle f = 18λtno
− 11λN − 5ϖtno − 2Ωtno and object o3e49 shows libration of
the angle f = 15λtno − 8λN − 5ϖtno − 2Ωtno.

Single and/or insecure detections are not enough to
characterize the structure of a resonance or provide a well
constrained population estimate, but we can check whether our
single secure detections for the 7:4 and 7:3 resonances are
consistent with the G12 models and population estimates for
these resonances. To test the 7:3 and 7:4 resonance models, we
ran the G12 parameterized models through the OSSOS survey
simulator to generate 10,000 simulated detections for the 7:4
and 7:3. In both cases the observed characteristics of the real
OSSOS detections (e, i, d, Hr, and Af) fall within the 95%
bounds of the synthetic detections, indicating that the G12
models are consistent with the OSSOS detections. We also
generated population estimates for these models of the 7:4 and

7:3 resonances. For the 7:4 resonance, the median population
of objects with Hr < 8.66 is 1000 with a 95% confidence range
of 50–5000 which agrees with the G12 95% confidence
estimate of 1000–7000 objects with Hg < 9.16 (assuming
g− r = 0.5). For the 7:3 resonance, the median population of
objects with Hr < 8.66 is 4000 with a 95% confidence range of
100–20,000 again in agreement with the G12 95% confidence
estimate of 1000–12,000 objects with Hg < 9.16. Testing of the
other G12 resonance models and population estimates will be
presented in future papers as more OSSOS blocks are
completed and the orbits of the remaining insecure 13AE and
13AO resonant detections are improved by follow up
observations.

9. DISCUSSION AND SUMMARY

We have presented the detections of resonant objects from
the first two of the eight OSSOS observational blocks. The
OSSOS detections of 3:2, 5:2, and 2:1 resonant objects are
broadly consistent with the resonance models and population
estimates found by CFEPS (G12). This verification of CFEPS
results with an entirely independent data set inspires additional
confidence in the results from the CFEPS/OSSOS survey
characterization method. Our primary results are as follows.

1. Our population estimates are listed in Table 2. These
values are consistent with CFEPS population estimates
within the uncertainties (G12). We find that given a
modified empirical color conversion, the DES population
estimates (Adams et al. 2014) are also consistent with
these results within our 95% confidence intervals.

2. OSSOS detections of several very low-amplitude 3:2
objects require a refinement of the CFEPS plutino model,
extending the libration amplitude distribution to lower
values. Lower amplitude librators are produced more
efficiently in models appealing to capture during smooth
migration of Neptune than in models which fill Kuiper
Belt phase space (for example, during dynamical
upheaval of the giant planets) and leave behind resonant
populations because the resonances are regions of
dynamical stability. Additional dynamical modeling is
required to determine whether our low-amplitude libra-
tors provide evidence for a population of migration-
captured resonant objects in the 3:2. Our low-amplitude
detections were enabled by the placement of the 13AO
block ≈10° from one of the ortho-Neptune perihelion
locations. Future OSSOS blocks will improve our
characterization of this population. Figure 13 displays
an estimated visibility map for the 3:2 resonance given
the full OSSOS survey.

3. We find no evidence of the H-magnitude distribution
transition suggested by Alexandersen et al. (2014) in our
population of 3:2 objects. However, we find that if such a
transition is present, our small sample of objects would
reject a single slope H model only ∼80% of the time. The
increased sample size provided by future OSSOS blocks
will place better constraints on the H distribution of the
plutinos.

4. The OSSOS 5:2 detections confirm the finding in G12
that this resonance is more populated than expected based
on existing models for the dynamical history of the outer
solar system. After restricting ourselves to the eccen-
tricity range visible in the OSSOS blocks (e > 0.35), we

Figure 11. Histogram of population estimates from 10,000 survey simulator
runs for our nominal 3:2, 5:2, and 2:1 population models. The top panel shows
the results for just the OSSOS detections for the 13AE and 13AO blocks. The
bottom panel shows the results for combining the two OSSOS blocks with
CFEPS.

16

The Astronomical Journal, 152:23 (25pp), 2016 July Volk et al.



independently verify that the total population of the 5:2 is
at least as large as that of the 2:1 and possibly as large as
that of the 3:2. Given this confirmation, future models of
dynamical emplacement of Kuiper Belt objects must
produce a large population in the 5:2. The addition of
future OSSOS detections will reduce the large uncertainty
in our resonant population estimates and allow a more
precise measurement of the 3:2/5:2/2:1 population
ratios.

5. We have confirmed that the inclination distribution of the
2:1 resonance is much colder than those of the 5:2 and
3:2. This result might indicate that a larger fraction of 2:1
objects were caught in resonance from a dynamically
unexcited reservoir. We speculate that a larger fraction of
2:1 objects may have been caught during migration of
Neptune from the objects originally located in the region
of the observed cold classical Kuiper Belt, although this
scenario might not be consistent with the wide range of
colors seen for 2:1 objects compared to the cold classicals
by Sheppard (2012). We will investigate this speculation
in future modeling work.

6. Using the combined CFEPS and OSSOS 2:1 detections,
we have placed new, more restrictive constraints on both
the fraction of the 2:1 resonant objects that are symmetric
librators as well as the ratio of leading to trailing

asymmetric librators. Our current limits do not substan-
tially constrain histories of resonance capture during
migration, but future OSSOS blocks will be sensitive to
both leading and trailing asymmetric librators (see
Figure 14 for an estimated 2:1 visibility map for the full
survey). If the populations of leading and trailing librators
are significantly different, this difference may be
identifiable by the full OSSOS sample.

OSSOS observed two blocks leading Neptune from late
2013 to late 2015, and this should slightly more than double the
resonant sample once the data is fully analyzed; this will allow
an improvement of the current analysis (especially for the 2:1).
The second half of OSSOS will produce orbits by early 2017,
and will cumulatively provide ∼5–6 times the current 13AE/O
block sample; the multiple is >4 due to filter upgrades and
seeing improvements occurring in a now-vented dome at the
CFHT telescope, both of which improve magnitude depth.
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Figure 12. Comparison of the DES (Adams et al. 2014) 3:2, 5:2, and 2:1 population estimates (data taken from their Figure 1) to the population estimates for CFEPS
(G12) and the first two OSSOS blocks (this paper) when shifted to the VR system. The solid lines for CFEPS and OSSOS show our estimated best-fit exponential H
distributions with a slope α = 0.9 anchored at the N(Hg < 9.16) values from G12 for CFEPS and the N(Hr < 8.66) values from Table 2; the estimated 95% confidence
limits are shown as dashed lines for both CFEPS and OSSOS. The arrows indicate the approximate range in HVR where CFEPS and OSSOS had detections for each
resonance; each purple dot for the DES results is an individual detection and thus shows the DES observed range of HVR. We assume color conversions of g −
VR = 0.4 and g − r = 0.5.

17

The Astronomical Journal, 152:23 (25pp), 2016 July Volk et al.



which is operated by the National Research Council (NRC) of
Canada, the Institute National des Sciences de l’universe of the
Centre National de la Recherche Scientifique (CNRS) of
France, and the University of Hawaii, with this project
receiving additional access due to contributions from the
Institute of Astronomy and Astrophysics, Academia Sinica,
National Tsing Hua University, and National Science Council,
Taiwan. The authors recognize and acknowledge the sacred
nature of Maunakea, and appreciate the opportunity to use data
observed from the mountain. This work is based in part on data
produced and hosted at the Canadian Astronomy Data Centre.
We acknowledge useful discussions with Rebekah Dawson
about the use of statistical tests in this work.

APPENDIX A
STATISTICAL TESTS

Throughout this paper, we describe the H distribution and
dynamical properties of the underlying resonant population
using simple parametrized models. Given the set of objects
observed by OSSOS, we would like to determine which values
of the models’ parameters are most probable, identify the range
of parameter values that reasonably match the data, and verify
that our simple models can fit the data sufficiently well that
more complicated models are not required.

To achieve the first two goals, we would in principle like to
calculate, in multiple dimensions, the relative likelihoods of
observing our detected objects given each set of model
parameters. Given a uniform (uninformative) prior, these
relative likelihoods are equivalent to the Bayesian posterior
distribution or, in other words, the relative likelihoods of each
set of model parameters. The sufficiency of our models could
then be assessed by using the most probable model parameters
and comparing the probability computed for the observed data
set to the distribution of probabilities produced by synthetic
data sets. This procedure is described in Appendix A.1. In
practice, this full calculation is difficult because significant
computational resources are required to evaluate the observa-
tional biases in our data.

Fortunately, our inferred distributions for the inclination and
libration amplitude do not depend substantially on the inferred
distributions of other parameters (see Section 4.2). We can
therefore employ a maximum likelihood calculation for the

inclination distribution and libration amplitude distributions
using one-dimensional models, fixing all other distributions to
a set of acceptable parameter values.
The inferred distance of detection, absolute magnitude, and

eccentricity distributions, however, are correlated and must be
treated together. Even this three-dimensional space is very
computationally expensive to probe with high resolution using
a relative likelihood calculation (Appendix A.1), so we
compromise by combining an Anderson–Darling rejectability
statistic and a χ-squared calculation intended to assess
goodness-of-fit, described in Appendices A.2 and A.3,
respectively.

A.1. Maximum Likelihood

From Bayes’ theorem, the probability of a model A given our
data set D is ( ∣ ) ( ∣ ) ( )µP A D P D A P A . Our model, A, consists of
a set of parameters that characterize the distributions of
eccentricity (e), inclination (i), libration amplitude (f), absolute
magnitude (H), and heliocentric distance at discovery (d) for
the KBO population in a specified resonance. In all cases, the
logarithmic scale of our model parameters is known. We
therefore assume uniform (uninformative) priors on our
parameterized models P(A), so that

( ∣ ) ( ∣ ) ( )µP A D P D A . 9

To calculate the relative likelihoods of each model (each set of
parameterized distributions) given our set of observed objects
D, we would therefore like to know the probability of
observing D given each possible set of model parameters.
The nature of the observational biases that must be applied to

our models means that we cannot analytically calculate
( ∣ )P D A . Instead, we must estimate this probability numerically.

To do so, we use the OSSOS survey simulator. The survey
simulator produces a set of synthetic detections given a model
of the underlying population. If the survey simulator could be
run an infinite number of times, it would (when normalized)
translate each model (or set of parameter values) into a
probability distribution for the properties of a detected object,

( ∣ )fP e i H d A, , , ,1 , given the model and a specified total
number of detections; the total number of objects in the model
itself is a free parameter in our parameterized models, and it is
allowed to vary so that the model produces a total number of

Figure 13. Estimated visibility map for the 3:2 resonance in the full OSSOS survey assuming a uniform underlying distribution in e, i, and Af and a slope of α = 0.9
for the H distribution (see Section 4 and Figure 2 for comparison).
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detections equal to the actual number of detections. The
probability of observing N detected objects with a given set of
(e, i, f, H, d ) is then

( ∣ ) ( ∣ ) ( ) fµ
=

P D A P e i H d A, , , , . 10
j

N

j j j j j
1

1

The most probable model is the one that maximizes ( ∣ )P D A .
In practice, we can only run the survey simulator a finite

number of times per set of model parameters, so our calculation
of P1 must be binned in e, i, f, H, and d. Because we are
calculating ( ∣ )P D A1 numerically from synthetic detections,
there is an uncertainty due to Poisson noise in the number of
detections expected by the model. In bin k, we estimate this
uncertainty to be

( ∣ ) ( ∣ ) ( )=dP x A
n

n
P x A , 11k

k

k
k1 1

where nk is the number of synthetic detections in bin k and we
have used xk as shorthand for the values of (e, i, f, H, d) in each
bin. We then propagate this uncertainty through the calculation
of ( ∣ )P D A (Equation (10)) by adding them in quadrature. Two
models can only be distinguished if their relative probabilities

( ∣ )P A D differ by more than the errors in their ( ∣ )P A D .
In principle, we would like to—for each set of parameter

values—produce a sufficient number of simulated detections
that we could map this five-dimensional probability distribu-
tion, allowing us to directly compute the relative probabilities
of the observed data for a large sets of parameter values
spanning their full range and allowing for correlations in the
parameters. In practice, running the survey simulator a
sufficient number of times to do this is prohibitively
computationally expensive given the size of the currently
allowed parameter space (see Alexandersen 2015 for another
discussion of this); when OSSOS is complete, the allowed
parameter space will be smaller and there will likely be enough
real detections to make the expenditure of computational

resources worthwhile. Due to the computational expense, in
this paper we only apply this approach in a few cases. For our
parameterized inclination distribution, we can do this calcul-
ation in one dimension (inclination) to find the most probable
inclination width; we can limit ourselves to one dimension
because the observability of the inclination distribution is fairly
independent of the other orbital element distributions and the H
distribution (see Figure 3). In that case, we fix the eccentricity,
H, and libration amplitude distributions and run a suite of
survey simulations over a wide range of inclination widths to
find which width, σi, maximizes the probability

( ∣ ) ( ∣ )s sµ  =P D P ii j
N

j i1 1 . A similar calculation is done for
the parameterized libration amplitude distribution. These one-
dimensional probability calculations only require ∼104–105
synthetic detections per model iteration to adequately sample
the binned probability distribution with fractional uncertainties
<10−3 in P1 for almost all bins that contain a real detection.
To assess model sufficiency for the inclination distribution

(and analogously for the libration amplitude distribution), for
each σi, we produce a large set of synthetic data sets of size N
drawn from Equation (6). We calculate ( ∣ )P D A for each
synthetic data set using Equation (10). We then determine
whether ( ∣ )P D A calculated for the observed data is consistent
with the distribution of ( ∣ )P D A generated by the synthetic data.
Consistency is defined as lying in the middle 95% of the
cumulative distribution (removing the bottom 2.5% and top
2.5%). We find that the range of values for σi accepted by this
procedure is similar to the range of values not rejected by the
Anderson–Darling test, described in Appendix A.2.
Because of the coupled observational biases, calculating

relative probabilities for our different H distribution/eccen-
tricity models requires us to bin the probability distribution in
three dimensions: eccentricity, distance at discovery, and
absolute magnitude. For reasonable bin sizes, determining the
probability distribution to fractional uncertainties <10−2 in
most bins, and <10−1 in all bins requires of the order of 107

synthetic detections per model iteration. For this reason, we

Figure 14. Estimated visibility map for the 2:1 resonance in the full OSSOS survey assuming a uniform underlying distribution in e, i, and Af within the resonant
phase space for each libration island and a slope of α = 0.9 for the H distribution (see Section 6 and Figure 9 for comparison).
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only calculate ( ∣ )P D A for a few of our favored models in order
to compare their relative probabilities.

A.2. Anderson–Darling Test

We use the Anderson–Darling test statistic (AD statistic)
outlined by NIST.12 The AD statistic is defined as

( )= - -A N S, 122

where there are N ordered data points, Yj, and S is given by

( ) [ ( ) ( ( ))] ( )å=
-

+ -
=

+ -S
j

N
F Y F Y

2 1
ln ln 1 , 13

j

N

j N j
1

1

where F(Yj) is the cumulative distribution function of the model
being tested. Larger values for A2 correspond to cumulative
distributions that are more different. The significance of the
value of A2 is determined by calculating the expected
distribution of A2 by repeatedly drawing samples of N random
points from the model distribution and computing their AD
statistic. A model is rejected at P% confidence if the observed
value of the AD statistic is larger than P% of the modelʼs
subsample AD statistics.

The above calculation is for a one-dimensional distribution.
To extend to testing multiple distributions at once, we linearly
add the AD statistic for each one-dimensional distribution
(Alexandersen et al. 2014; Parker 2015). The significance of
the summed AD statistic is then determined just as above.

A.3. Chi-square Statistic

One measure of the goodness-of-fit for any particular
parameterized model is the chi-square statistic:

( ) ( )åc = -
=

O E E , 14
j

n

j j j
2

1

2

where Oj is the observed frequency in bin j and Ej is the
expected frequency in bin j given the model (Press et al. 1992).
The exact value of χ2 will depend on the choice of bins for the
data, but if the binning is the same across multiple models, a
smaller value of χ2 indicates a better fit to the observations. As
with the AD statistic, a simplistic way to extend this to multiple
dimensions is to linearly add the one-dimensional values of χ2.
We do not have enough observational data points to calculate a
meaningful χ2 by binning in multiple dimensions
simultaneously.

APPENDIX B
ORBIT FITTING AND UNCERTAINTIES

The determination of the best-fit orbit and classification
status of each OSSOS detection follows the procedure outlined
in Gladman et al. (2008). A barycentric best-fit orbit is
determined based on all available OSSOS astrometric observa-
tions using the Bernstein & Khushalani (2000) algorithm. This
is the best-fit orbit listed in Table 1; the listed uncertainties are
taken from the diagonal elements of the best-fit orbitʼs
covariance matrix. To determine the classification status of an
object, we integrate three clones of the observed object to
determine the dynamical behavior: the best-fit orbit and then

orbits with the maximum and minimum deviations in
semimajor axis that are still consistent with the observations.
To generate the minimum and maximum a clones, we perform
a search for acceptable orbits in Bernstein & Khushalani
(2000)’s (α, β, γ) coordinate system, with a maximum
variation in each coordinate of 3σ as determined from the
diagonal elements of the (α, β, γ) covariance matrix. An orbit
fit is deemed consistent with the observations if the worst
residual between its predictions and the observed astrometric
positions is not larger than 1.5 times the best-fit orbitʼs worst
residual and if the rms residual is not more than 1.5 times the
best-fit orbitʼs rms residual. The Bernstein & Khushalani
(2000) orbit fitting code does provide a semimajor axis
uncertainty (σa), but Gladman et al. (2008) chose to use the
residuals to determine the minimum and maximum a orbits
because doing so provides a better estimate of the true
uncertainty when the observational arc is short or when there
might be systematic errors in the astrometry. In these cases, it is
not unusual for the maximum and minimum a orbits to differ
from the best-fit value by significantly more than 3σa. This is
because the nominal 1σa uncertainty for the best-fit orbit is
calculated from the diagonals of the barycentric orbital
elements covariance matrix, which is produced by assuming
an linearized conversion from the (α, β, γ) coordinate system to
orbital elements; in cases where the orbital uncertainties are
still large, this conversion can become inaccurate (Bernstein &
Khushalani 2000), leading to the diagonal elements under-
estimating the uncertainty in a. The accuracy of the OSSOS
astrometry means that for most of the objects listed in Table 1,
the minimum and maximum a orbits converge to within 3σa of
the best-fit a even with a relatively short observational arc;
however, we still use the Gladman et al. (2008) procedure for
assessing the acceptable range in a.
The best-fit, minimum a, and maximum a orbits are

integrated forward in time for 10 Myr using SWIFT (Levison
& Duncan 1994) under the influence of the Sun and the four
giant planets. We check for libration of any resonance angle
(defined by Equation (1)) for all p:q resonances with p � 30
and ∣ ∣- <p q 30 within 2% of the best-fit a. An object is
securely resonant if all three clones librate for more than half of
the 10Myr integration. Insecure resonant objects (indicated by
“I” in Table 1) have a best-fit orbit that is resonant but at least
one other clone that does meet this criterion. Objects listed as
“IH” in Table 1 had to be classified by hand as resonant
because the libration behavior of the clones was too messy to
be correctly identified as libration by the automated code.
To better assess the likelihood that an insecure object is

resonant and to determine the uncertainty in the libration
amplitude for securely resonant objects, we integrated a
distribution of clones for each resonant detection. We generated
250 orbits by using the full (α, β, γ) covariance matrix to
produce Gaussian deviations from the best-fit orbitʼs (α, β, γ).
We integrated all 250 clones for 10Myr and measured the
libration amplitude, Af = (fmax − fmin)/2, over 10 1Myr
windows and averaged the 10 Af values. The resulting
distribution in Af is often not symmetric around the best-fit
orbitʼs Af. In cases where the distribution is roughly symmetric
about the best-fit Af, we use the cumulative distribution in Af
to find the 1σ values that bracket the central 67% of the
distribution. In cases where it is highly asymmetric about the
best fit (see Figure 15), we take the 1σ uncertainty to be the
range from the minimum Af to the point in the cumulative12 http://www.itl.nist.gov/div898/handbook/eda/section3/eda35e.htm
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distribution where 67% of the clones have smaller Af (or the
reverse if the asymmetric peak in the Af distribution occurs at
large Af). In some cases where the libration behavior is not
well behaved and the test particles slip in and out of libration,
the time histories are examined manually to determine the
percentage of the clones that are resonant for at least half of the
10Myr simulation; in these instances, no value of Af is given
in Table 1, and just the percentage of resonant clones is listed.

APPENDIX C
SURVEY SIMULATOR DETAILS:
MODELING THE RESONANCES

This section gives a more detailed accounting of the
modeling of each resonant population within the OSSOS
survey simulator. In the plutino section below, we also outline
some validation testing we have performed to ensure that the
simplified, parameterized models of the resonances are
adequate representations of the resonant populations given
the current data. In all cases below, we select orbital elements
for the epoch JD 2453157.5, at which time Neptuneʼs mean
longitude is λN = 5.489 (the survey simulator propagates the
orbits to the appropriate epoch for each OSSOS observation).

C.1. Modeling the 3:2 Population

The first step in generating plutinos within the survey
simulator is to choose whether the plutino is also in the Kozai
resonance. For non-Kozai plutinos, the procedure for choosing
an orbit is as follows.

1. a is randomly chosen uniformly in the range 39.45
± 0.2 AU.

2. e is chosen randomly from Equation (5).
3. i is chosen randomly from Equation (6).
4. the objectʼs Af is chosen randomly from the specified

distribution (see Section 4.2).
5. f is then given by ( )f p=  + fA t180 sin 2 , where t is a

random number distributed uniformly from 0 to 1.
6. M is randomly chosen uniformly in the range 0–2π.
7. Ω is randomly chosen uniformly in the range 0–2π.
8. ω is fully constrained by the above choices and is given

by w f l= - - W +M .1

2

3

2 N

The objectʼs absolute magnitude is then chosen randomly
from Equation (4), fully specifying the objectʼs position and
brightness. The procedure for selecting a and e is simplified
slightly compared to that in G12 and Alexandersen et al.
(2014), who included the shape of the resonanceʼs a–e phase
space in this selection by rejecting (and re-selecting) a and e in
instances where the selection falls outside the resonance
boundaries; we find that this complication is unnecessary
because the exact value of a does not change the observability
of an object in the survey simulator (in fact, the results of our
modeling would not change if we completely eliminated the
variations in a and just assigned every plutino a = 39.45 AU).
This procedure is simplified compared to real resonant

dynamics, so we have performed a few basic tests to ensure that
it provides an adequate representation of the plutino popula-
tion. The two major simplifications made above are (1) the
independent selection of e, i, and Af, and (2) using a simple
harmonic oscillator to represent the time evolution of f
(Equation (7)) while ignoring the small changes in osculating
orbital elements (particularly e and i) that occur over a resonant
cycle.
To test the implications of the first simplifying assumption,

we constructed various plutino populations that have identical
one-dimensional distributions of e, i, and Af, but within the
generating procedure we imposed different relationships
among these distributions to see how the relationship affects
the distribution of simulated detections and the total population
estimates generated by the survey simulator. For example,
depending on how an object becomes trapped in resonance,
there can be a relationship between its eccentricity and its
libration amplitude (e.g., Chiang & Jordan 2002). A correlation
between libration amplitude and eccentricity in the real
population of plutinos could introduce observational biases
that would not be properly accounted for in a survey simulator
model that treats those two distributions independently. The
result could be a model where the real and simulated detections
match in terms of the individual, one-dimensional distributions
but has an inaccurate total population estimate because the
correlation was not modeled. Figure 16 shows two plutino
models with identical intrinsic e and Af distributions: one
model has a population in which low libration amplitude
simulated objects have higher eccentricities than large libration

Figure 15. Distributions of Af for two plutinos. The left panel shows OSSOS plutino o3o15, where the Af distribution is nearly symmetric around the best-fit orbitʼs
Af. The right panel shows o3o20PD, which has a very asymmetric Af distribution. In both panels, the best-fit orbitʼs Af is indicated by a black circle and the arrows
show what we are calling the 1σ uncertainties.
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amplitude objects and the other model has no correlation. In
this case, there are small differences between the simulated
detected Af distributions for the two models and a small
difference in the total population estimate; note that the pattern
of small differences here will depend on the sky coverage of a
given survey. However, the differences are much smaller than
the model uncertainties given a hypothetical observed sample
size of 100. A test of correlations between i and Af produces
similar results. Given the current sample size of 21 OSSOS
detections and 24 CFEPS detections for the plutinos (and
smaller sample sizes for all the other resonances), the
simplified, independent treatment of the e, i, and Af
distributions is adequate.

To examine our second simplifying assumption, we tested
whether more accurately generating objects with positions and
velocities consistent with real resonant behavior can affect the
results of model testing. Within the survey simulator, resonant
objects are assigned values of (a, e, i, Ω, ω, f) randomly from
within the desired distributions, and then those values are
interpreted as instantaneous osculating elements that can be
translated into a sky position. In reality, however, an objectʼs
osculating a, e, i vary depending on where the object is in the
resonant cycle, as shown in Figure 17. This means there is a
relationship between the exact current osculating a, e, i and the
value of f (which determines Ω, ω, and M) that is not correctly
modeled when these parameters are chosen independently. The

time-weighting of f for a real population can also differ from
the simple harmonic oscillator model we use in the survey
simulator. Figure 17 shows the variation of a, e, and f for two
different plutinos from a numerical integration; the left panel
shows a plutino with moderate Af and sinusoidal variations
while the right panel shows a larger Af plutino with non-
sinusoidal variations. The non-sinusoidal f variations in the
real plutinos means that the survey simulator with its simplified
sinusoidal time-weighting is not correctly accounting for the
amount of time a real plutino spends at specific values of f
(which determines where on the sky relative to Neptune the
objectʼs perihelion most often occurs). To see if more accurate
time-weighting of f and the inclusion of the associated
variations in a and e would significantly alter our conclusions
about the plutino population, we performed short numerical
integrations of i ∼ 0 plutinos whose time histories can be used
to generate plutinos within the survey simulator. We then took
our nominal plutino H, e, and Af model from Section 4 and
generated objects in the survey simulator either by our standard
procedure or by selecting objects’ orbital elements from the
numerical simulations. In this planar test case, we find that
sampling from the numerical integrations does not mean-
ingfully change the distribution or number of simulated
observed objects. There are also no disallowed combinations
of e and Af in the planar case (i.e., all values of e exist in
resonant phase space for all values of Af), so our independent

Figure 16. Left: distribution of simulated detections for populations with and without a correlation between libration amplitude and eccentricity. Right: distribution of
total population estimates for the two cases. The two horizontal lines indicate the average and 1σ population estimates.

Figure 17. Test particles in the 3:2 resonance from a numerical simulation that show sinusoidal (left) and non-sinusoidal (right) variations in a, e, and f.
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treatment of these distributions is not artificially generating
plutinos that would actually be in a non-resonant portion of the
phase space.

The procedure for Kozai plutinos is different because the
Kozai resonance presents an additional constraint on the orbit
due to the libration of ω around either 90° or 270°. In the
idealized three-body problem, where we just consider the
evolution of a test particle under the influence of the Sun and
Neptune, a plutino librating in the Kozai resonance will
follow a closed path in e–ω space (see, for example, Figure 4
in Wan & Huang 2007). This trajectory represents a path in e–
ω space with a constant value of the resonant Hamiltonian
(see, for example, the expression for the approximate
Hamiltonian given in Wan & Huang 2007). Sets of
Hamiltonian level curves (and thus libration trajectories) can
be grouped according to the value of the z component (normal
to the reference plane) of the orbitʼs angular momentum,

µ -L e i1 cosz
2 . Lz is a preserved quantity, meaning that a

test particleʼs eccentricity and inclination evolution are
coupled as the test particle traces out its trajectory in e–ω
space. A plutinoʼs Kozai libration behavior could be specified
by selecting Lz, calculating all of the associated Kozai
resonant Hamiltonian level curves for that Lz, selecting one
of these level curves, selecting an (e,ω) pair from that level
curve trajectory, and then calculating the appropriate i based
on e and Lz. One could then select a 3:2 libration amplitude,
set f as above in the non-Kozai case, select a random M, and
calculate f w lW = - - +M1

2

3

2 N to fully specify the orbit
and position (this is the procedure used in Lawler &
Gladman 2013).

The above procedure would be the best way to generate
Kozai plutinos in the three-body problem, but the real Kozai
plutinos do not follow such a nicely defined set of trajectories.
In Figure 18 we show the evolution of one of the OSSOS Kozai
plutinos in the 10Myr classification integration superposed
over Hamiltonian level curves calculated using the approximate
Hamiltonian from Wan & Huang (2007) for two different
values of Lz; the values of Lz are parameterized by imax, the
maximum inclination allowed by conservation of Lz at e = 0.
The observed plutino in Figure 18 has imax = 18°, but the figure
shows that its evolution in e–ω space is not well described by

any of the imax = 18° Hamiltonian level curves. From visual
inspection of the evolution of the five OSSOS Kozai plutinos,
we find that all of the Kozai plutinos have an average
eccentricity over their Kozai cycles of e ∼ 0.25 despite having
imax ranging from 17° to 24°. The three-body Hamiltonian
predicts that the average e should decrease with decreasing
imax, but the real Kozai plutinos do not show this and all have
average e that approximately matches the Hamiltonian level
curves for imax = 23°.5 (see the right panel of Figure 18). The
exact path a Kozai plutino follows in e–ω space does change
with changing imax. The amplitude of the eccentricity variations
in the real Kozai plutinos seems to decrease with decreasing
imax, which can be seen in the right panel of Figure 18 where
the real imax = 18° objectʼs path is flattened relative to the
imax = 23°.5 Hamiltonian curves; a real object with imax = 23°.5
would more closely match the eccentricity amplitude predicted
by the level curves.
Because all of the OSSOS Kozai plutinos appear to share an

average eccentricity with the imax = 23°.5 Hamiltonian curves,
we use this one set of level curves to choose e and ω for all of
the Kozai plutinos in the survey simulator. This is the same
approach used in G12 because all of their Kozai plutinos were
well described by those level curves and all had imax near 23°.5.
Some of the OSSOS Kozai plutinos have significantly lower
current orbital inclinations and imax than the G12 Kozai
plutinos, so we have altered the way the inclinations of Kozai
plutinos are calculated within the survey simulator. After e and
ω are chosen from the imax = 23°.5 level curves, we then choose
a new value of imax uniformly in the range 17°–24° and then set
the generated Kozai plutinoʼs inclination such that

( ) ( )= -i i ecos cos 1max
2 . Thus, the full procedure we

use for generating a Kozai plutino is as follows.

1. a is randomly chosen uniformly in the range 39.45
± 0.2 AU.

2. A Hamiltonian level curve is randomly chosen from the
Kozai resonant imax = 23°.5 level curves.

3. A position on that level curve is randomly chosen (with
the simplified assumption that equal time is spent on all
parts of the level curve), setting e and ω.

4. imax is chosen randomly from the uniform range 17°–24°.

Figure 18. Evolution of plutino o3o08 (black dots) from a numerical simulation that includes the Sun and the four outer planets plotted over approximate Hamiltonian
level curves for imax = 18° (left panel) and imax = 23°. 5 (right panel). The object has imax = 18°, but the poor match in the left panel indicates that the expression for the
approximate Hamiltonian in the three-body problem as given by Wan & Huang (2007) is not a good match to the dynamics in the full integrations.
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5. i is then calculated from ( ) ( )= -i i ecos cos 1max
2 .

6. The objectʼs Af is chosen randomly from the specified
distribution (see Section 4.2).

7. f is given by ( )f p=  + fA t180 sin 2 , where t is a
random number distributed uniformly from 0 to 1.

8. M is randomly chosen uniformly in the range 0–2π.
9. Ω is fully constrained by the above choices and is given

by f w lW = - - +M .1

2

3

2 N

The objectʼs absolute magnitude is then chosen randomly
from Equation (4), fully specifying the objectʼs position and
brightness. This procedure is not entirely self-consistent in the
use of analytical models of the Kozai population, but as shown
in Figure 18, the real evolution of the Kozai plutinos matches
the Hamiltonian level curves in a qualitative rather than
quantitative sense. This procedure yields synthetic detected
Kozai plutinos that are an acceptable match to the real
detections. In future work, the procedure will be re-evaluated to
see if a more accurate representation of Kozai phase space is
required.

C.2. Modeling the 5:2 Population

The procedure for choosing an orbit for a 5:2 object is as
follows.

1. a is randomly chosen uniformly in the range 55.4
± 0.2 AU.

2. e is chosen randomly from Equation (5).
3. i is chosen randomly from Equation (6).
4. The objectʼs Af is chosen randomly from the specified

distribution (see Section 5).
5. f is then given by ( )f p=  + fA t180 sin 2 , where t is a

random number distributed uniformly from 0 to 1.
6. M is randomly chosen uniformly in the range 0–2π.
7. Ω is randomly chosen uniformly in the range 0–2π.
8. ω is fully constrained by the above choices and is given

by w f l= - - W +M .1

2

5

2 N

The objectʼs absolute magnitude is then chosen randomly
from Equation (4), fully specifying the objectʼs position and
brightness.

C.3. Modeling the 2:1 Population

To generate an orbit for a 2:1 resonant object, we first decide
if it is a symmetric or asymmetric librator. If it is a symmetric
librator, we then choose the orbit as follows.

1. a is randomly chosen uniformly in the range 47.8
± 0.2 AU.

2. e is randomly chosen uniformly from 0.05 to 0.35.
3. i is chosen randomly from Equation (6).
4. Af is randomly chosen uniformly from 125° to 165°.
5. f is then given by ( )f p=  + fA t180 sin 2 , where t is a

random number distributed uniformly from 0 to 1.
6. M is randomly chosen uniformly in the range 0–2π.
7. Ω is randomly chosen uniformly in the range 0–2π.
8. ω is fully constrained by the above choices and is given

by ω = f − M − Ω + λN.

For asymmetric librators, we choose the orbit as follows.

1. a is randomly chosen uniformly in the range 47.8
± 0.2 AU.

2. i is chosen randomly from Equation (6).

3. e is randomly chosen uniformly from 0.1 to 0.4.
4. The center of libration, fc, for that eccentricity is

calculated from Figure 4 in Nesvorný & Roig (2001).
5. The maximum Af, for that eccentricity is also calculated

from Figure 4 in Nesvorný & Roig (2001).
6. Af is randomly chosen uniformly from 0 − Af,max.

7. The object is chosen to be in either the leading or trailing
asymmetric island and fc is adjusted appropriately.

8. f is then given by ( )f f p= + fA tsin 2c , where t is a
random number distributed uniformly from 0 to 1.

9. M is randomly chosen uniformly in the range 0–2π.
10. Ω is randomly chosen uniformly in the range 0–2π.
11. ω is fully constrained by the above choices and is given

by ω = f − M − Ω + λN.

The objectʼs absolute magnitude is then chosen randomly
from Equation (4), fully specifying the objectʼs position and
brightness. The above ranges in e and Af for the symmetric and
asymmetric librators are chosen based on numerical modeling
and stability analysis of the 2:1 resonance by Nesvorný & Roig
(2001) and Tiscareno & Malhotra (2009).

APPENDIX D
COLORS FOR COMPARISON TO THE DES

In order to compare population estimates for the resonant
populations from the DES (Adams et al. 2014), CFEPS (G12),
and OSSOS (Bannister et al. 2016), we have to know how to
compare the H magnitudes of the resonant objects in the
surveys’ different filters. H magnitudes for the DES objects are
given in the VR band in Adams et al. (2014), whereas the H
magnitudes of the CFEPS detections are in the g band (Petit
et al. 2011) and the OSSOS detections are in the r band. As
discussed in Section 4.3, the average color for comparing
CFEPS and OSSOS resonant objects is - =g r 0.5 based on
CFEPS objects that were observed in both the r and g bands
(Petit et al. 2011). Fortunately, some objects seen in the DES
were serendipitously present in the CFEPS fields, allowing a
direct estimation of the average color is between the g and VR
photometric systems (light curves, while present, should average
out). We compared the list of CFEPS resonant detections and
DES resonant detections and found all instances of overlapping
detections where both HVR and Hg are measured. These objects

Table 3
Resonant Object Colors

Res
CFEPS
Designation MPC Designation Hg HVR Hg–HVR

5:2 L4j06PD 2002 GP32 7.03 6.99 0.04
5:2 L4h02PD 2004 EG96 8.36 8.01 0.35
7:4 K02O03 2000 OP67 8.13 7.27 0.86
2:1 L4v06 2004 VK78 8.5 8.16 0.34
7:3 L5c19PD 2002 CZ248 8.5 8.27 0.23
3:2 L5i06PD 306792

(2001 KQ77)
7.48 7.2 0.28

3:2 L4v13 2002 VV130 7.6 7.51 0.09
12:5 L5c12 119878 (2002

CY224)
6.69 6.1 0.59

3:1 L4v08 307463 (2004
VU130)

6.95 6.1 0.85

Note. H magnitudes for the resonant objects detected by both CFEPS and DES.
Hg measurements are taken from Petit et al. (2011) and HVR are taken from
Adams et al. (2014).
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are listed in Table 3. We find that these resonant objects have
colors in the range g − VR= 0.04–0.86 with an average color of
g − VR = 0.4. This differs from the assumption of g− VR= 0.1
in Adams et al. (2014); although g − VR = 0.1 falls inside the
lower extremity of the range, typical colors are much larger. As
such, a comparison of population estimates requires a larger shift
between the surveys.

REFERENCES

Adams, E. R., Gulbis, A. A. S., Elliot, J. L., et al. 2014, AJ, 148, 55
Alexandersen, M. 2015, PhD thesis, Univ. British Columbia
Alexandersen, M., Gladman, B., Kavelaars, J. J., et al. 2014, arXiv
Bannister, M. T., Kavelaars, J. J., Petit, J. M., et al. 2016, AJ, in press

(arXiv:1511.02895)
Batygin, K., Brown, M. E., & Fraser, W. C. 2011, ApJ, 738, 13
Bernstein, G., & Khushalani, B. 2000, AJ, 120, 3323
Brown, M. E. 2001, AJ, 121, 2804
Chiang, E. I., & Jordan, A. B. 2002, AJ, 124, 3430
Chiang, E. I., Jordan, A. B., Millis, R. L., et al. 2003, AJ, 126, 430
Dawson, R. I., & Murray-Clay, R. 2012, ApJ, 750, 43
Elliot, J. L., Kern, S. D., Clancy, K. B., et al. 2005, AJ, 129, 1117
Fernandez, J. A., & Ip, W.-H. 1984, Icar, 58, 109
Fraser, W. C., Bannister, M. T., Pike, R., et al. 2015, BAAS, 47, 211.15
Fraser, W. C., Brown, M. E., Morbidelli, A., Parker, A., & Batygin, K. 2014,

ApJ, 782, 100
Fraser, W. C., & Kavelaars, J. J. 2009, AJ, 137, 72
Fuentes, C. I., George, M. R., & Holman, M. J. 2009, ApJ, 696, 91
Gallardo, T., & Ferraz-Mello, S. 1998, P&SS, 46, 945
Gladman, B., Marsden, B. G., & Vanlaerhoven, C. 2008, in Nomenclature in

the Outer Solar System, ed. M. A. Barucci et al. (Tuscon, AZ: Univ.
Arizona Press)

Gladman, B. J., Lawler, S. M., Petit, J. M., et al. 2012, AJ, 144, 23
Gulbis, A., Elliot, J., Adams, E., et al. 2010, AJ, 140, 350
Hahn, J. M., & Malhotra, R. 2005, AJ, 130, 2392
Johansen, A., Oishi, J. S., Mac Low, M.-M., et al. 2007, Natur, 448, 1022
Kavelaars, J. J., Jones, R. L., Gladman, B. J., et al. 2009, AJ, 137, 4917

Lawler, S. M., & Gladman, B. 2013, AJ, 146, 6
Levison, H. F., & Duncan, M. J. 1994, Icar, 108, 18
Levison, H. F., Morbidelli, A., Vanlaerhoven, C., Gomes, R., & Tsiganis, K.

2008, Icar, 196, 258
Lykawka, P. S., & Mukai, T. 2007a, Icar, 189, 213
Lykawka, P. S., & Mukai, T. 2007b, Icar, 192, 238
Malhotra, R. 1993, Natur, 365, 819
Malhotra, R. 1995, AJ, 110, 420
Morbidelli, A., Levison, H. F., & Gomes, R. 2008, in The Dynamical Structure

of the Kuiper Belt and Its Primordial Origin, ed. M. A. Barucci et al.
(Tuscon, AZ: Univ. Arizona Press)

Morbidelli, A., Thomas, F., & Moons, M. 1995, Icar, 118, 322
Murray, C. D., & Dermott, S. F. 1999, Solar System Dynamics (Cambridge:

Cambridge Univ. Press)
Murray-Clay, R. A., & Chiang, E. I. 2005, ApJ, 619, 623
Murray-Clay, R. A., & Chiang, E. I. 2006, ApJ, 651, 1194
Nesvorny, D. 2015, AJ, 150, 73
Nesvorný, D., & Roig, F. 2000, Icar, 148, 282
Nesvorný, D., & Roig, F. 2001, Icar, 150, 104
Parker, A. H. 2015, Icar, 247, 112
Petit, J. M., Kavelaars, J. J., Gladman, B. J., et al. 2011, AJ, 142, 131
Pike, R. E., Kavelaars, J. J., Petit, J. M., et al. 2015, AJ, 149, 202
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992,

Numerical Recipes in FORTRAN. The Art of Scientific Computing (2nd
ed.; Cambridge: Cambridge Univ. Press)

Shankman, C., Gladman, B. J., Kaib, N., Kavelaars, J. J., & Petit, J. M. 2013,
ApJL, 764, L2

Shankman, C., Kavelaars, J. J., Gladman, B. J., et al. 2016, AJ, 151, 31
Sheppard, S. S. 2012, AJ, 144, 169
Thomas, F., & Morbidelli, A. 1996, CeMDA, 64, 209
Thommes, E. W., Duncan, M. J., & Levison, H. F. 1999, Natur, 402, 635
Tiscareno, M. S., & Malhotra, R. 2009, AJ, 138, 827
Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. F. 2005, Natur,

435, 459
Volk, K., & Malhotra, R. 2011, ApJ, 736, 11
Wan, X.-S., & Huang, T.-Y. 2007, MNRAS, 377, 133
Wolff, S., Dawson, R. I., & Murray-Clay, R. A. 2012, ApJ, 746, 171
Youdin, A. N., & Goodman, J. 2005, ApJ, 620, 459
Yu, Q., & Tremaine, S. 1999, AJ, 118, 1873

25

The Astronomical Journal, 152:23 (25pp), 2016 July Volk et al.

http://dx.doi.org/10.1088/0004-6256/148/3/55
http://adsabs.harvard.edu/abs/2014AJ....148...55A
http://arXiv.org/abs/1511.02895
http://dx.doi.org/10.1088/0004-637X/738/1/13
http://adsabs.harvard.edu/abs/2011ApJ...738...13B
http://dx.doi.org/10.1086/316868
http://adsabs.harvard.edu/abs/2000AJ....120.3323B
http://dx.doi.org/10.1086/320391
http://adsabs.harvard.edu/abs/2001AJ....121.2804B
http://dx.doi.org/10.1086/344605
http://adsabs.harvard.edu/abs/2002AJ....124.3430C
http://dx.doi.org/10.1086/375207
http://adsabs.harvard.edu/abs/2003AJ....126..430C
http://dx.doi.org/10.1088/0004-637X/750/1/43
http://adsabs.harvard.edu/abs/2012ApJ...750...43D
http://dx.doi.org/10.1086/427395
http://adsabs.harvard.edu/abs/2005AJ....129.1117E
http://dx.doi.org/10.1016/0019-1035(84)90101-5
http://adsabs.harvard.edu/abs/1984Icar...58..109F
http://adsabs.harvard.edu/abs/2015DPS....4721115F
http://dx.doi.org/10.1088/0004-637X/782/2/100
http://adsabs.harvard.edu/abs/2014ApJ...782..100F
http://dx.doi.org/10.1088/0004-6256/137/1/72
http://adsabs.harvard.edu/abs/2009AJ....137...72F
http://dx.doi.org/10.1088/0004-637X/696/1/91
http://adsabs.harvard.edu/abs/2009ApJ...696...91F
http://dx.doi.org/10.1016/S0032-0633(98)00027-0
http://adsabs.harvard.edu/abs/1998P&amp;SS...46..945G
http://dx.doi.org/10.1088/0004-6256/144/1/23
http://adsabs.harvard.edu/abs/2012AJ....144...23G
http://dx.doi.org/10.1088/0004-6256/140/2/350
http://adsabs.harvard.edu/abs/2010AJ....140..350G
http://dx.doi.org/10.1086/452638
http://adsabs.harvard.edu/abs/2005AJ....130.2392H
http://dx.doi.org/10.1038/nature06086
http://adsabs.harvard.edu/abs/2007Natur.448.1022J
http://dx.doi.org/10.1088/0004-6256/137/6/4917
http://adsabs.harvard.edu/abs/2009AJ....137.4917K
http://dx.doi.org/10.1088/0004-6256/146/1/6
http://adsabs.harvard.edu/abs/2013AJ....146....6L
http://dx.doi.org/10.1006/icar.1994.1039
http://adsabs.harvard.edu/abs/1994Icar..108...18L
http://dx.doi.org/10.1016/j.icarus.2007.11.035
http://adsabs.harvard.edu/abs/2008Icar..196..258L
http://dx.doi.org/10.1016/j.icarus.2007.01.001
http://adsabs.harvard.edu/abs/2007Icar..189..213L
http://dx.doi.org/10.1016/j.icarus.2007.06.007
http://adsabs.harvard.edu/abs/2007Icar..192..238L
http://dx.doi.org/10.1038/365819a0
http://adsabs.harvard.edu/abs/1993Natur.365..819M
http://dx.doi.org/10.1086/117532
http://adsabs.harvard.edu/abs/1995AJ....110..420M
http://dx.doi.org/10.1006/icar.1995.1194
http://adsabs.harvard.edu/abs/1995Icar..118..322M
http://dx.doi.org/10.1086/426425
http://adsabs.harvard.edu/abs/2005ApJ...619..623M
http://dx.doi.org/10.1086/507514
http://adsabs.harvard.edu/abs/2006ApJ...651.1194M
http://dx.doi.org/10.1088/0004-6256/150/3/73
http://adsabs.harvard.edu/abs/2015AJ....150...73N
http://dx.doi.org/10.1006/icar.2000.6480
http://adsabs.harvard.edu/abs/2000Icar..148..282N
http://dx.doi.org/10.1006/icar.2000.6568
http://adsabs.harvard.edu/abs/2001Icar..150..104N
http://dx.doi.org/10.1016/j.icarus.2014.09.043
http://adsabs.harvard.edu/abs/2015Icar..247..112P
http://dx.doi.org/10.1088/0004-6256/142/4/131
http://adsabs.harvard.edu/abs/2011AJ....142..131P
http://dx.doi.org/10.1088/0004-6256/149/6/202
http://adsabs.harvard.edu/abs/2015AJ....149..202P
http://dx.doi.org/10.1088/2041-8205/764/1/L2
http://adsabs.harvard.edu/abs/2013ApJ...764L...2S
http://dx.doi.org/10.3847/0004-6256/151/2/31
http://adsabs.harvard.edu/abs/2016AJ....151...31S
http://dx.doi.org/10.1088/0004-6256/144/6/169
http://adsabs.harvard.edu/abs/2012AJ....144..169S
http://dx.doi.org/10.1007/BF00728348
http://adsabs.harvard.edu/abs/1996CeMDA..64..209T
http://dx.doi.org/10.1038/45185
http://adsabs.harvard.edu/abs/1999Natur.402..635T
http://dx.doi.org/10.1088/0004-6256/138/3/827
http://adsabs.harvard.edu/abs/2009AJ....138..827T
http://dx.doi.org/10.1038/nature03539
http://adsabs.harvard.edu/abs/2005Natur.435..459T
http://adsabs.harvard.edu/abs/2005Natur.435..459T
http://dx.doi.org/10.1088/0004-637X/736/1/11
http://adsabs.harvard.edu/abs/2011ApJ...736...11V
http://dx.doi.org/10.1111/j.1365-2966.2007.11541.x
http://adsabs.harvard.edu/abs/2007MNRAS.377..133W
http://dx.doi.org/10.1088/0004-637X/746/2/171
http://adsabs.harvard.edu/abs/2012ApJ...746..171W
http://dx.doi.org/10.1086/426895
http://adsabs.harvard.edu/abs/2005ApJ...620..459Y
http://dx.doi.org/10.1086/301045
http://adsabs.harvard.edu/abs/1999AJ....118.1873Y

	1. INTRODUCTION
	2. BACKGROUND AND METHODS
	2.1. Neptune&#x02019;s Mean Motion Resonances
	2.2. Detection Biases for Resonant Objects
	2.3. Modeling Neptune&#x02019;s Resonances Using a Survey Simulator

	3. OSSOS RESONANT DETECTIONS
	4. PLUTINOS: POPULATION MODEL AND LIBRATION AMPLITUDES
	4.1. Sensitivity Maps
	4.2. Plutino i and A&phi; Distributions
	4.3. Plutino H and e Distributions
	4.4. Plutino Kozai Fraction
	4.5. Plutino Population Estimate and Summary

	5. THE SURPRISINGLY POPULOUS 5:2 RESONANCE
	6. NEW CONSTRAINTS ON THE SYMMETRIC TO ASYMMETRIC RATIO FOR THE 2:1 RESONANCE
	7. POPULATION ESTIMATES
	8. OTHER RESONANCES
	9. DISCUSSION AND SUMMARY
	APPENDIX ASTATISTICAL TESTS
	A.1. Maximum Likelihood
	A.2. Anderson-Darling Test
	A.3. Chi-square Statistic

	APPENDIX BORBIT FITTING AND UNCERTAINTIES
	APPENDIX CSURVEY SIMULATOR DETAILS: MODELING THE RESONANCES
	C.1. Modeling the 3:2 Population
	C.2. Modeling the 5:2 Population
	C.3. Modeling the 2:1 Population

	APPENDIX DCOLORS FOR COMPARISON TO THE DES
	REFERENCES



