338 research outputs found

    From flying rockets to Tesla: examining the sustainable mobility preferences of primary school children in Denmark and the Netherlands

    Get PDF
    The relationship between children and cars is not directly obvious, but they are a core group of passengers moving daily from and to school and they are future potential buyers. Moreover, many of the values, worldviews, and patterns of energy (and mobility) consumption enshrined in adults become formed and perhaps cemented in childhood. Lastly, children are not directly concerned with many of the choices and information that adults handle, so measuring what they know could proxy for popular knowledge in society. This paper offers a first international comparison between 587 surveyed schoolchildren between 9-13 years of age in Denmark and the Netherlands on EV knowledge and current and future car transport. Results indicate that national and regional context matter, as do gender, age, and to a certain extent the level experience with low-carbon innovations such as electric vehicles. In general, however, children rank the environmental impact of cars just below personal safety and we can conclude that they are aware of EVs and their main benefits. Simultaneously, they also know that EVs are costlier to purchase. Most important, the children overwhelmingly agree on the future direction of car-based transport with cars that are safer, more energy efficient and alternatively fueled

    Applying a science‐based systems perspective to dispel misconceptions about climate effects of forest bioenergy

    Get PDF
    The scientific literature contains contrasting findings about the climate effects of forest bioenergy, partly due to the wide diversity of bioenergy systems and associated contexts, but also due to differences in assessment methods. The climate effects of bioenergy must be accurately assessed to inform policy-making, but the complexity of bioenergy systems and associated land, industry and energy systems raises challenges for assessment. We examine misconceptions about climate effects of forest bioenergy and discuss important considerations in assessing these effects and devising measures to incentivize sustainable bioenergy as a component of climate policy. The temporal and spatial system boundary and the reference (counterfactual) scenarios are key methodology choices that strongly influence results. Focussing on carbon balances of individual forest stands and comparing emissions at the point of combustion neglect system-level interactions that influence the climate effects of forest bioenergy. We highlight the need for a systems approach, in assessing options and developing policy for forest bioenergy that: (1) considers the whole life cycle of bioenergy systems, including effects of the associated forest management and harvesting on landscape carbon balances; (2) identifies how forest bioenergy can best be deployed to support energy system transformation required to achieve climate goals; and (3) incentivizes those forest bioenergy systems that augment the mitigation value of the forest sector as a whole. Emphasis on short-term emissions reduction targets can lead to decisions that make medium- to long-term climate goals more difficult to achieve. The most important climate change mitigation measure is the transformation of energy, industry and transport systems so that fossil carbon remains underground. Narrow perspectives obscure the significant role that bioenergy can play by displacing fossil fuels now, and supporting energy system transition. Greater transparency and consistency is needed in greenhouse gas reporting and accounting related to bioenergy

    MEDEAS: a new modeling framework integrating global biophysical and socioeconomic constraints

    Get PDF
    Producción CientíficaA diversity of integrated assessment models (IAMs) coexists due to the different approaches developed to deal with the complex interactions, high uncertainties and knowledge gaps within the environment and human societies. This paper describes the open-source MEDEAS modeling framework, which has been developed with the aim of informing decision-making to achieve the transition to sustainable energy systems with a focus on biophysical, economic, social and technological restrictions and tackling some of the limitations identified in the current IAMs. MEDEAS models include the following relevant characteristics: representation of biophysical constraints to energy availability; modeling of the mineral and energy investments for the energy transition, allowing a dynamic assessment of the potential mineral scarcities and computation of the net energy available to society; consistent representation of climate change damages with climate assessments by natural scientists; integration of detailed sectoral economic structure (input–output analysis) within a system dynamics approach; energy shifts driven by physical scarcity; and a rich set of socioeconomic and environmental impact indicators. The potentialities and novel insights that this framework brings are illustrated by the simulation of four variants of current trends with the MEDEAS-world model: the consideration of alternative plausible assumptions and methods, combined with the feedback-rich structure of the model, reveal dynamics and implications absent in classical models. Our results suggest that the continuation of current trends will drive significant biophysical scarcities and impacts which will most likely derive in regionalization (priority to security concerns and trade barriers), conflict, and ultimately, a severe global crisis which may lead to the collapse of our modern civilization. Despite depicting a much more worrying future than conventional projections of current trends, we however believe it is a more realistic counterfactual scenario that will allow the design of improved alternative sustainable pathways in future work.Ministerio de Economía, Industria y Competitividad (Project CO2017-85110-R)Ministerio de Economía, Industria y Competitividad (Project JCI-2016–28833)MEDEAS project, funded by the European Union’s Horizon2020 research and innovation programme under grant agree-ment no. 691287.LOCOMOTION project, funded by the EuropeanUnion’s Horizon 2020 research and innovation programmeunder grant agreement no. 82110

    Developing policies for the end-of-life of energy infrastructure: Coming to terms with the challenges of decommissioning

    Get PDF
    Energy sector policies have focused historically on the planning, design and construction of energy infrastructures, while typically overlooking the processes required for the management of their end-of-life, and particularly their decommissioning. However, decommissioning of existing and future energy infrastructures is constrained by a plethora of technical, economic, social and environmental challenges that must be understood and addressed if such infrastructures are to make a net-positive contribution over their whole life. Here, we introduce the magnitude and variety of these challenges to raise awareness and stimulate debate on the development of reasonable policies for current and future decommissioning projects. Focusing on power plants, the paper provides the foundations for the interdisciplinary thinking required to deliver an integrated decommissioning policy that incorporates circular economy principles to maximise value throughout the lifecycle of energy infrastructures. We conclude by suggesting new research paths that will promote more sustainable management of energy infrastructures at the end of their life

    Are we seeing clearly? The need for aligned vision and supporting strategies to deliver net-zero electricity systems

    Get PDF
    This paper explores the trends, step changes and innovations that could impact the integration of renewable energy into electricity systems, explores interventions that may be required, and identifies key areas for policy makers to consider. A Delphi approach is used to collect, synthesise, and seek consensus across expert viewpoints. Over sixty experts across a range of geographies including the US, Europe, New-Zealand, Australia, Africa, India and China participated. They identified 26 trends, 20 step changes, and 26 innovations that could lead to major shifts in the design, operation, or management of electricity systems. Findings suggest that key challenges are not technological. Instead they are with delivering an aligned vision, supported by institutional structures, to incentivise, facilitate, and de-risk the delivery of a completely different type of energy system. There is a clear role for government and policy to provide a future energy vision and steer on strategic issues to deliver it; to create space for new actors and business models aligned with this vision; and to create an environment where research, development, demonstration and deployment can promote technologies, system integration and business model innovation at a rate commensurate with delivering net-zero electricity system

    Policy mixes for sustainability transitions: an extended concept and framework for analysis

    Get PDF
    Reaching a better understanding of the policies and politics of transitions presents a main agenda item in the emerging field of sustainability transitions. One important requirement for these transitions, such as the move towards a decarbonized energy system, is the redirection and acceleration of technological change, for which policies play a key role. In this regard, several studies have argued for the need to combine different policy instruments in so-called policy mixes. However, existing policy mix studies often fall short of reflecting the complexity and dynamics of actual policy mixes, the underlying politics and the evaluation of their impacts. In this paper we take a first step towards an extended, interdisciplinary policy mix concept based on a review of the bodies of literature on innovation studies, environmental economics and policy analysis. The concept introduces a clear terminology and consists of the three building blocks elements, policy processes and characteristics, which can be delineated by several dimensions. Based on this, we discuss its application as analytical framework for empirical studies analyzing the impact of the policy mix on technological change. Throughout the paper we illustrate the proposed concept by using the example of the policy mix for fostering the transition of the German energy system to renewable power generation technologies. Finally, we derive policy implications and suggest avenues for future research

    Techno-Economic Aspects of Production, Storage and Distribution of Ammonia

    Get PDF
    The cost of green ammonia is determined primarily by its production cost, but it is also influenced by the cost of distribution and storage. Production costs are a function of plant location, size, and whether the plant is islanded or semi-islanded, that is whether the power source is variable renewable energy (VRE) or grid electricity. Capital costs for a green ammonia plant consist of equipment for the production of hydrogen (electrolyzer) and nitrogen (air separation), ammonia synthesis (Haber–Bosch, compressors and separators) and storage. Operating costs are mainly due to power consumption. The electrolyzer dominates both capital and operating costs in the manufacture of green ammonia. Ammonia is stored in either pressurized or refrigerated vessels with the latter preferred for large scale storage. Distribution of ammonia may involve several transport modes depending on the location of the production and consumption sites. Inland transport can involve pipelines, trains, and trucks, and offshore shipping is generally done with medium, large or very large gas carrier vessels with refrigerated tanks. A case study to supply a fleet of 36 ultralarge container vessels (ULCVs) operating between the ports of Shanghai and Rotterdam is used to exemplify the combination of production, storage and transportation costs

    The Economics of 1.5°C Climate Change

    Get PDF
    The economic case for limiting warming to 1.5°C is unclear, due to manifold uncertainties. However, it cannot be ruled out that the 1.5°C target passes a cost-benefit test. Costs are almost certainly high: The median global carbon price in 1.5°C scenarios implemented by various energy models is more than US$100 per metric ton of CO2 in 2020, for example. Benefits estimates range from much lower than this to much higher. Some of these uncertainties may reduce in the future, raising the question of how to hedge in the near term. Maintaining an option on limiting warming to 1.5°C means targeting it now. Setting off with higher emissions will make 1.5°C unattainable quickly without recourse to expensive large-scale carbon dioxide removal (CDR), or solar radiation management (SRM), which can be cheap but poses ambiguous risks society seems unwilling to take. Carbon pricing could reduce mitigation costs substantially compared with ramping up the current patchwork of regulatory instruments. Nonetheless, a mix of policies is justified and technology-specific approaches may be required. It is particularly important to step up mitigation finance to developing countries, where emissions abatement is relatively cheap

    Taking the slow route to decarbonisation? Developing climate governance for international transport

    Get PDF
    Despite their significant, growing contribution to global emissions, international aviation and shipping have avoided a significant climate governance response until recently. This paper outlines the urgent need for, but major barriers to, decarbonisation of these industries, including various market failures and sensitivities over restraining demand. The need and potential for international governance to address these issues is seen to vary across aviation and shipping, given different industry structures and characteristics. A range of relevant inter- and transnational governance institutions is highlighted and an assessment of their overall adequacy offered. With a 2018 commitment to significant emission reduction, maritime governance effort has progressed further, although significant implementation challenges remain. Meanwhile aviation-related commitments rely more on out-of-sector offsets. Options for enhancing governance for decarbonisation are outlined, highlighting the importance of, inter alia, coordination between the UNFCCC and sectoral bodies, mechanisms to finance R&D and incentivise investment, and openness in key decision-making fora
    • 

    corecore