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Abstract

The economic case for limiting warming to 1.5◦C is unclear, due to man-
ifold uncertainties. However, it cannot be ruled out that the 1.5◦C target
passes a cost-benefit test. Costs are almost certainly high: The median global
carbon price in 1.5◦C scenarios implemented by various energy models is
more than US$100 per metric ton of CO2 in 2020, for example. Bene-
fits estimates range from much lower than this to much higher. Some of
these uncertainties may reduce in the future, raising the question of how
to hedge in the near term. Maintaining an option on limiting warming to
1.5◦C means targeting it now. Setting off with higher emissions will make
1.5◦C unattainable quickly without recourse to expensive large-scale carbon
dioxide removal (CDR), or solar radiation management (SRM), which can
be cheap but poses ambiguous risks society seems unwilling to take. Carbon
pricing could reduce mitigation costs substantially compared with ramping
up the current patchwork of regulatory instruments. Nonetheless, a mix of
policies is justified and technology-specific approaches may be required. It is
particularly important to step up mitigation finance to developing countries,
where emissions abatement is relatively cheap.
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1. INTRODUCTION

The 2015 Paris Agreement, in pursuit of the objectives of the United Nations Framework
Convention on Climate Change (UNFCCC), aimed toward “[h]olding the increase in the
global average temperature to well below 2◦C above preindustrial levels and pursuing ef-
forts to limit the temperature increase to 1.5◦C above preindustrial levels” (Article 2; see
https://sustainabledevelopment.un.org/frameworks/parisagreement). Previously, in Copen-
hagen in 2009 and Cancun in 2010, the agreement was simply to hold warming below 2◦C; as such,
the Paris Agreement implies an increase in ambition, albeit the wording affords 1.5◦C aspirational
status.

From an economist’s point of view, there is an obvious question to ask of the 1.5◦C warming
target, in relation to other warming targets: Is it efficient, in the sense of increasing welfare? In
more straightforward terms, will the benefits to society of limiting warming to 1.5◦C exceed the
costs? This is the primary focus of our article. However, we should point out that there are other
approaches to evaluating the 1.5◦C target that could substitute for, or complement, cost-benefit
analysis (CBA), including multi-criteria decision analysis, the precautionary principle, and human
rights, to name but a few (see 1 for a review in the context of climate change).

It is not easy to provide a clear answer to the question of whether the benefits of the 1.5◦C
target exceed the costs, for two basic reasons. The first is uncertainty about the costs and benefits
of mitigating climate change (2–4). This uncertainty is particularly acute when it comes to eval-
uating the 1.5◦C target. Estimates of the cost of meeting the 1.5◦C target are just beginning to
emerge. And whether one tackles the question by estimating the net benefits of allowing a further
0.5◦C warming beyond the 1◦C that the planet has already warmed, or by estimating the net
benefits of reducing warming by 0.5◦C below 2◦C, the signal is likely to be small in relation to the
noise of the climate system (5)—and the economy for that matter. The second reason is that CBA
of climate change is contentious. The opposing views of Stern (6) and Nordhaus (7) exemplify
this well, although the literature has become large and the debating points more numerous (8).
CBA of climate change requires a series of methodological choices to be made, some of which
have an ethical or otherwise philosophical character (9, 10), where economics can provide limited
guidance.

Therefore, we mostly refrain from undertaking a formal CBA of the 1.5◦C target, using a
cost-benefit integrated assessment model (IAM) (11–16). Rather, we use the basic principles of
CBA to structure this article into, firstly, an assessment of the benefits of limiting warming to
1.5◦C, usually in natural rather than monetary units, and, secondly, an assessment of the costs of
doing so, where monetary units are more straightforward. The reference point is typically the 2◦C
target.
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Nonetheless, some of the contentious methodological choices in CBA are still relevant, because
they determine the weight that we place on different kinds of benefits and costs, and different
benefits/costs occurring in different places, at different times and with different probabilities.
They are inescapable, whether or not the comparison of benefits and costs is formalized.

The most famous debate is probably about the appropriate discount rate to apply to future
benefits/costs (6, 17, 18). A higher discount rate favors smaller reductions in greenhouse gas
(GHG) emissions by placing lower weight on future benefits/costs. Although the costs of reducing
emissions tend to be front-loaded, the benefits accrue mainly in the future, due to the long residence
time of CO2 in the atmosphere. Therefore, a high discount rate would count against the 1.5◦C
target.

Another choice is how to aggregate benefits/costs accruing to individuals living in different
places. It may be that a relatively small proportion of the world’s population would enjoy large net
benefits from limiting warming to 1.5◦C. This is of course an empirical question that the remainder
of the article tackles, but some aspects of the climate negotiations indeed suggest it; the 1.5◦C
target was advocated above all by small island developing states (SIDS) (19, 20). Insofar as a policy
provides concentrated net benefits to relatively few, these will tend to be outweighed by net costs
to the majority. However, recently, “prioritarian” approaches have been proposed (21–23), which
place greater weight on those with lower levels of utility/wellbeing, itself proportional to income.1

If these individuals enjoy large net benefits from limiting warming to 1.5◦C, the cost-benefit logic
could be overturned.

A third methodological choice is how to treat uncertainty. There are at least two facets to
this large topic. One is the prospect of learning about benefits/costs and reducing uncertainty
over time. Could we not learn then act, rather than acting before learning? This boils down to
what the appropriate near-term hedging strategy is with respect to GHG emissions, while we
wait to find out more about benefits/costs. Such a strategy will generally maintain option value
by avoiding making irreversible decisions (24, 25), but both GHG emissions and investments to
reduce them are partly irreversible (26). Consequently, the evidence on whether it is better to act
then learn or vice versa is ambiguous (27, 28), but if GHG emissions significantly increase the risk
of catastrophic climate impacts, then the hedging strategy is likely to entail deep emissions cuts
in the near term (29, 30). Alternatively, if we pose the problem in terms of which of a range of
temperature targets to hit (31), and that range includes 1.5◦C, then irreversibility may give us no
choice but to aim toward 1.5◦C; otherwise, the possibility will be permanently eliminated, save
for large-scale carbon dioxide removal (CDR) or solar radiation management (SRM).

The other aspect of uncertainty is whether it can be reduced to risk, i.e., whether each possible
future state of the world can be assigned a unique, precise probability. Most research on acting
versus learning does so. However, it has been argued that risk is not a good characterization of our
knowledge about climate change; rather, we have at best imprecise estimates of these probabilities,
which is uncertainty in the Knightian sense (32) and is often described in economics as a situation
of ambiguity (33, 34). Recent contributions stress that this is an additional justification for strong
climate policy (35–37). The reason is that ambiguity about the impacts of GHG emissions increases
ambiguity about future incomes, and ambiguity-averse decision makers would prefer to reduce
this uncertainty, which appears to be achieved by cutting GHG emissions. One of the primary
sources of ambiguity about the impacts of GHG emissions is the possible existence of tipping

1A consistent CBA would also place more weight on monetary benefits/costs accruing to individuals on low incomes, through
the assumption of diminishing marginal utility of income. That is, an extra dollar is worth more, the lower one’s income is.
Diminishing marginal utility is also a justification for discounting; hence, this approach is “consistent” in the sense that it
treats as the same comparisons over time and space.
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elements in the climate system (38, 39). Insofar as limiting warming to 1.5◦C avoids triggering
damaging, large-scale climate discontinuities, ambiguity aversion may favor the 1.5◦C target. Of
course, this is also an empirical question we address in the review. In addition, ambiguity aversion
is particularly relevant when considering the benefits/costs of relying on SRM to limit warming
to 1.5◦C.

Lastly, limiting warming to 1.5◦C might provide particularly large benefits to natural ecosys-
tems. Estimating the value of these benefits in terms of social welfare is notoriously difficult, as
markets, which could be used to reveal the strength of preferences via prices, are usually missing.
Such benefits are beyond the scope of CBA as originally envisaged, although there is a large body
of work in environmental valuation that tries to estimate them (40). Recent work has also em-
phasized that if natural ecosystem services become relatively scarce in comparison with material
goods, then conserving them via limiting warming should be afforded higher value (41, 42).

The rest of the article is structured as follows. Sections 2 and 3 survey the literature on the ben-
efits and costs, respectively, of the 1.5◦C target. Limiting warming to just 1.5◦C raises questions
about the desirability of geo-engineering technologies (i.e., CDR and SRM). Section 4 discusses
these. Limiting warming to 1.5◦C also poses many challenging questions of public policy; eco-
nomics has some important insights to contribute, which are the subject of Section 5. Section 6
concludes by pulling together the analyses of benefits/costs.

2. THE BENEFITS OF LIMITING WARMING TO 1.5◦C
This section focuses on the benefits of limiting warming to 1.5◦C compared with 2◦C, in both
human systems and ecosystems. We consider both managed and unmanaged ecosystems. An
emerging literature is beginning to quantify these benefits in a variety of metrics, using deter-
ministic models that often account for uncertainty in regional climate-change projections. The
focus here is on the global scale. We highlight some key regional benefits, but our intention is
not to provide a comprehensive regional analysis, which is in any case infeasible at present, given
the available literature. This review does not include the possible environmental side effects of
mitigation itself. For example, large-scale bioenergy with carbon capture and storage (BECCS),
based on dedicated secondary biofuel plantations, could lead to further exceedance of the Earth’s
planetary boundaries for biogeochemical flows, biosphere integrity, and land use and would be
close to exceeding the planetary boundary for freshwater use (43).2

Recent studies using different approaches project that the Arctic Ocean will become ice-free
in the summer under 2◦C warming, whereas if warming is limited to 1.5◦C then ice will persist
through the summer in most years (44–47). This has important implications for Inuit culture and
species such as polar bears, walruses, and seabirds, which are dependent on sea ice for their survival
(48). Limiting warming to 1.5◦C would also reduce the positive temperature feedback that would
come from changing albedo associated with reduced ice extent. These studies improve on earlier
projections of Arctic sea ice extent, which were inconsistent with recent observations of declining
summer sea ice (49).

Limiting warming to 1.5◦C would also avoid the melting of an estimated 2 million km2 of
permafrost, relative to 2◦C (50). Thus, it would significantly reduce damages to Arctic ecosystems,
buildings, and infrastructure (48), as well as avoid significant releases of carbon to the atmosphere,
which would further accelerate warming otherwise (51).

2The projected impacts here are due to climate change alone and do not consider changes in land use. However, they generally
do account for projected increases in population.
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The risk of triggering irreversible melting of the Greenland or Antarctic ice sheets, key tipping
points in the global climate system, is lower under 1.5◦C warming than 2◦C, but the literature
cannot definitively say whether such melting would be triggered at either level of warming. For
instance, the trigger point for the Greenland ice sheet is thought to lie between 0.8◦C and 3.2◦C
(52, 53). Reducing these risks would lower the rate of sea level rise in the near term, as well as the
future magnitude of sea level rise over the next several millennia. Complete melting of both ice
sheets is projected to result in an eventual sea level rise of 18 m.

Sea level rise in 2100 is projected to be approximately 0.1 m less and 30% slower (4.0–
4.6 mm/year compared with 5.6 mm/year) if warming is constrained to 1.5◦C compared with
2◦C (46, 54–56), with a corresponding reduction in the global area of land lost to inundation (an
estimated 87,000 km2 under 2◦C, compared with 73,000 km2 under 1.5◦C). In turn this is esti-
mated to reduce the number of people exposed to coastal flooding annually by 5 million by 2050
[including 40,000 fewer in SIDS (55)] and 8 million by 2100 (57). In particular, the frequency
of coastal floods in the Eastern United States and in Europe is projected to be approximately
50% lower under 1.5◦C compared with 2◦C (55). Projections also discern lower flood risk in the
vulnerable Ganges-Brahmaputra-Meghna delta by the 2040s on a 1.5◦C pathway (58).

The 30% slower rate of sea level rise associated with 1.5◦C warming significantly reduces losses
of natural wetlands and human systems to the sea, because natural sedimentation rates are able to
offset more of the sea level rise. The projected rate of sea level rise is the factor that determines the
rate of loss of saltmarshes: Approximately 60% loss of global saltmarsh has been projected (59) for
a rate of sea level rise of 4.4 mm/year. Avoiding faster sea level rise associated with 2◦C warming
is thus projected to be critical for preserving saltmarsh globally, as well as reducing the risk of
mangrove losses. Both saltmarsh and mangroves protect coastlines from the damaging effects of
storm surges.

Under 1.5◦C warming, the risks to coral reefs are already very high, with an estimated 90% of
reefs potentially at risk by 2050 (albeit allowing some recovery to ∼70% persistence by 2100). In
contrast, it is projected that ∼99% of reefs will be eliminated by 2100 under 2◦C warming (56,
60). Ocean acidification would be lower under 1.5◦C warming, reducing risks to pteropods and
bivalves, as well as coral reefs. More generally, limiting warming to 1.5◦C would also reduce risks
to krill and fish. Risks to low-latitude fisheries due to climate change are already significant, and
Cheung et al. (61) estimated that the potential global marine fishery catch will decline by more than
3 million metric tons per additional degree of warming. Lotze et al. (62) estimate corresponding
declines of 5% in global fish biomass and fisheries production per degree of warming. Taken
together, limiting warming to 1.5◦C compared with 2◦C would reduce the risks to the organisms
underpinning the marine food chain and upon which the survival of cetaceans, seabirds, fisheries,
and aquaculture depend.

Global and regional studies indicate substantially lower risks of temperature-related mortality
under 1.5◦C warming compared with 2◦C (63, 64). The geographical area exposed to heat-stress-
related risks is also projected to be smaller (65). Human exposure to heat waves in the Shared
Socioeconomic Pathway scenario 2 (SSP2) would be reduced by a mean of 62% (range 61–63%)
by 2100 (66). These benefits are larger than the disbenefits associated with reductions in cold-
related mortality. Worker productivity is projected to be reduced more and more with increased
warming (67), particularly in Southeast Asia. Several vector-borne diseases are expected to expand
geographically as the planet warms, including dengue fever and Lyme disease (68, 69). The distri-
bution of other vector-borne diseases, such as malaria, is projected to change, with risk increasing
in some areas and decreasing in others (57).

Several studies that quantify impacts on water resources under 1.5◦C warming find significant
benefits relative to 2◦C. Extensive benefits are projected for half the terrestrial land surface that is
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drylands, in terms of avoiding reduced runoff (70). With 2◦C global warming, aridification beyond
what is expected due to natural climate variability is projected to emerge in an estimated 24–32%
of the global land area. Under 1.5◦C global warming, the area affected would be reduced by
approximately two-thirds (71). Other examples of quantified global-scale benefits in 2100 include
180–274 million fewer people exposed to an increase in water scarcity (72) [a related study estimates
this to be a reduction from 8% to 4% of the global population exposed, with greater than 50%
confidence (73)] and a 25% reduction in freshwater stress in SIDS (74). By the end of the century,
drought exposure is also projected to be reduced by an estimated 39% (range 36–51%) globally
(66), with extreme drought exposure reduced by an estimated 25% (57), the greatest benefits being
in the Mediterranean, Southern Africa, and Northeast Brazil (75–77). In the Mediterranean, water
availability is projected to fall by 17% (range 8–28%) under 2◦C warming, but by only 9% (range
4.5–15.5%) under 1.5◦C warming (56). Declining water quality can often accompany declines in
streamflow, leading to adverse ecological effects.

As the planet warms, it is projected that some regions will experience decreases in precipitation
while others experience increases, with more of the rain falling in extreme precipitation events,
increasing the risk of flooding. At 1.5◦C warming, changes in annual stream flow exceeding 10%
are estimated to affect 15% of the global land area, compared with 27% at 2◦C (75). Limiting
warming to 1.5◦C is also projected to reduce flood risk at the global scale. It has been estimated
that 1.5◦C warming will result in a 100% increase in the global population exposed to fluvial flood
risk, compared with 170% under 2◦C, assuming constant population (78). Other studies suggest
that if warming is constrained to 1.5◦C rather than 2◦C, the population exposed to fluvial flood
risk by 2100 will be reduced by 36–46% (66) or 55–62% (57).3 The global land area exposed to
increases in 7-day high flows would be reduced from 21% to 11% (75).

Climate change is projected to change the geographical distribution of major terrestrial biomes
and individual species. Limiting warming to 1.5◦C may halve the number of plants and animals
that will lose more than half their range, compared with 2◦C, and it may reduce by two-thirds
the number of insects that will lose more than half their range, again compared with 2◦C (79).
Limiting warming to 1.5◦C would also reduce biome shifts (80), with 13% (range 8–20%) of
biomes transforming at 2.5◦C warming, but only 4% (range 2–7%) doing so at 1.0◦C, suggesting
7–8% may be transformed at 1.5◦C. The slower rates of regional climate change associated with
1.5◦C pathways would also allow ecosystems and species, in particular mammals, birds, and some
insects such as butterflies, a greater chance to adapt through natural processes of dispersal (81).
Warming has already increased fire frequency and is projected to progressively increase fire risk
(82) as global temperatures rise to 1.2◦C and beyond, including in North America (83). Increased
fire risk, in combination with increases in storminess and the geographic spread of pests and dis-
eases, increases the risk of forest dieback. Limiting warming would also reduce the potential for
climatic mismatch between predators and their prey, or plants and their pollinators (81), result-
ing in a greater proportion of terrestrial ecosystem functioning and services being maintained
under 1.5◦C compared with 2◦C. Risks to terrestrial biodiversity hotspots, including the Fynbos,
Namib-Karoo-Karooveld, Madagascar, African Rift Lakes, and Coastal East Africa (79, 84), de-
crease strongly as warming is reduced. An almost linear relationship between warming and species
extirpation risks in plants and animals has been found between 2◦C and 4◦C warming. Hence, risks
of extirpation, and potentially therefore extinction, would be expected to be lower if warming is
limited to 1.5◦C rather than 2◦C. Risks of the commitment of species to extinction have previously
been shown to increase with warming (85).

3Both studies allow for increases in population using SSP2, but they use different hydrological models.
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Climate change is already affecting crop yields, with more negative impacts than positive
ones, and with the positive impacts being predominantly at high latitudes (86). As the climate
warms to 1.5◦C and 2◦C, the number of negative impacts is expected to rise, and to become
predominant in most world regions, although positive effects could still be seen in some regions
if CO2 fertilization occurs (87, 88). However, the CO2 fertilization effect is very uncertain and
may be offset by declines in the protein content of crops, or damage from tropospheric ozone
(86). The impacts are projected to be greatest in tropical regions, where crops are grown closer to
their thermal limits. In particular, limiting warming to 1.5◦C compared with 2◦C is projected to
lower the risks to crop production in Sub-Saharan Africa, West Africa, Southeast Asia, and North,
Central, and South America (56, 57, 89), including low-income countries at low latitudes (90). In
particular, maize impacts are projected to be widespread, and limiting warming to 1.5◦C would
be beneficial for maize grown in drylands, which occupy half the terrestrial land surface (70).

Overall, limiting warming to 1.5◦C compared with 2◦C would have significant benefits in both
human and natural systems, including both terrestrial and marine ecosystems and the services they
provide. In particular, it would be expected to retain Arctic summer sea ice, protect 2 million km2

of permafrost, allow some coral reefs to survive, and prevent a significant portion of the increase in
extreme weather events such as heatwaves, floods, and droughts. Significant reductions in risk are
projected for water resources, agriculture, human health, and infrastructure. In ecosystems, risks
to terrestrial species would be greatly reduced, with a projected 50% reduction in local extirpation,
and marine ecosystems would be significantly healthier as well. Taken together, this means that
both human livelihoods and ecosystem services will be significantly greater in a 1.5◦C world than
in a 2◦C world.

3. THE COST OF ACHIEVING 1.5◦C
Mitigation assessments tend to focus on the maximum cumulative CO2 that can be emitted while
limiting warming to a given level (with specified probability or risk tolerance)—the carbon budget.
This is made easier by the approximately linear relationship between cumulative CO2 and warming
(91–93). The focus on CO2 is justified by the long-lived nature of atmospheric CO2 and its
dominance in total GHG emissions (94). However, there are different measures of a carbon budget,
depending on whether it is measured along an emissions path that exceeds the temperature target
as well as on the degree of warming that results from non-CO2 GHGs and other climate forcers,
such as aerosols (95).

The first consideration has given rise to two measures of a carbon budget: the threshold
exceedance budget (TEB), measured up to the time the temperature limit is exceeded (95), and
the threshold avoidance budget (TAB), for a specified time period over which the temperature
limit is never exceeded (95). A further measure that has been discussed is the overshoot net carbon
budget, which is the net cumulative CO2 to the point where a temperature target has been restored
(having been exceeded) as a result of emissions removals (96). Hence, the TEB and overshoot net
carbon budget are associated with temperature pathways that overshoot the target, whereas the
TAB is associated with pathways that do not. The second consideration gives rise to measures of
the carbon budget with different warming contributions from non-CO2 GHGs, the extreme case
including CO2 only.

In addition to these two considerations, the remaining carbon budget compatible with 1.5◦C
is affected by climate uncertainties. One is around the linear relationship between cumulative
CO2 and warming, termed the Transient Climate Response to Cumulative Carbon Emissions
(TCRE). The TCRE likely (i.e., with >66% probability) falls in the range 0.8–2.5◦C per 3,660
GtCO2 (94). Another uncertainty stems from the disparity between recent observed warming and
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warming projected by climate models (97). Previous carbon budget estimates have been based on
climate models.

Nonetheless, the remaining budget for 1.5◦C is likely to be very small. The Intergovernmental
Panel on Climate Change’s (IPCC’s) Fifth Assessment Report indicates that (based on a TCRE
of 1.6◦C) the TEB for limiting warming to 1.5◦C for >66% of model simulations is 400 GtCO2

from 2011, some 600 GtCO2 (60%) below the equivalent 2◦C budget (94). However, more recent
estimates have put a rather higher number on the 1.5◦C TEB, up to 900–1,000 GtCO2 from 2011,
for >66% of model simulations (97, 98).

The lower 1.5◦C carbon budget necessitates faster and deeper decarbonization of the global
economy. Annual CO2 emissions in scenarios that limit end-of-century warming to 1.5◦C (with
50% probability) reach net zero between 2045 and 2060, 10–20 years before scenarios that limit
warming to 2◦C (with >66% probability) (99). This requires much more rapid emissions re-
ductions in the 1.5◦C scenarios, at 2.0–2.8%/year over the period 2010–2050, compared with
1.2–1.8%/year for 2◦C scenarios. Emissions reductions over a decade or more at this rate have
been achieved at the country scale, but largely as a side effect of policies to reduce dependence on
oil rather than reducing CO2 (100). The most rapid of these was in Sweden, with a linear 3%/year
emissions reduction from 1974 to 1984 (101).

All of the aforementioned 1.5◦C scenarios overshoot the target before returning to it by 2100.
In addition, the majority of scenarios see significant emissions reductions starting from 2010,
which has not happened (102). If global mitigation efforts are consistent with the current Paris
pledges to 2030, then even a 5% annual rate of decarbonization post-2030 would provide less than
a 5% probability of keeping warming below 1.5◦C (103). Finally, they rely heavily on negative
emissions technologies such as BECCS to remove atmospheric CO2 at a scale, which achieves net
negative emissions in the second half of the century. Disallowing negative emissions also increases
required rates of decarbonization in the models.

For non-CO2 gases, analysis suggests that, on the one hand, there is little additional mitigation
in 1.5◦C scenarios compared with 2◦C scenarios, since most available measures are already used
up in 2◦C scenarios, given their relatively low cost (104, 105). On the other hand, there appears to
be considerable additional potential compared with what has been implemented in the available
energy systems models (106).

The more rapid decarbonization in the 1.5◦C scenarios is driven by greater energy demand
reductions (through increased energy efficiency) in the buildings, industry, and transport sectors,
faster decarbonization of the power sector, and more significant deployment of negative emissions
technologies (primarily BECCS) (99, 107). Figure 1 compares the 2050 values of 10 key metrics
for the energy system under 1.5◦C and 2◦C scenarios, drawing on a range of scenarios published
in recent years. Figure 1a shows the increased role of carbon capture and storage (CCS) in fossil-
fuel usage, the increased deployment of BECCS, and increased electrification in the buildings,
transport, and industry sectors. Figure 1b shows decreased energy demand in the buildings,
transport, and industry sectors, the lower carbon intensity of electricity and the reduced share
of fossil fuels in primary energy. Although the faster decarbonization to limit warming to 1.5◦C
results in a speedier transformation of the whole energy system, certain sectors are particularly
affected. As Figure 1 shows, there is relatively little change in the CO2 intensity of electricity
generation, as well as in the share of BECCS in total primary energy. By contrast, the energy end-
use sectors see more significant changes when going from 2◦C to 1.5◦C, particularly buildings
(through decreased energy demand) and transport (through reduced energy demand and increased
electrification).

Carbon prices are consistently higher in 1.5◦C scenarios. As Figure 2 shows, the median global
carbon price from a range of 1.5◦C scenarios is $85/tCO2 in 2020. This is in 2005 prices; adjusting
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Figure 1
Indicators of energy system change in 2050 in 1.5◦C and 2◦C scenarios. (a) Metrics for which 1.5◦C scenarios (orange) have higher 2050
values than 2◦C scenarios (blue). (b) Metrics where 1.5◦C scenario values are lower than 2◦C scenario values. Panel b shows change in
final energy for buildings, transport, and industry on 2010 levels and electricity CO2 intensity as a share of 2010 levels. For each
variable shown, values are medians across a range of <1.5◦C and <2◦C scenarios. Median values for the <1.5◦C scenarios were
computed from a scenario set obtained by pooling the 37 scenarios in Reference 99 and the five scenarios in Reference 187 that have a
>50% probability of limiting warming to 1.5◦C by 2100. Median values for the <2◦C scenarios were computed from the 125 scenarios
in Reference 187 with a >50% probability of limiting warming to between 1.75◦C and 2◦C. Abbreviations: BECCS, bioenergy with
carbon capture and storage; CCS, carbon capture and storage.

for inflation it amounts to $105/tCO2 in 2018 prices. The median carbon price rises to $145/tCO2

in 2030, and by 2100 it is almost $4,500/tCO2 (both in 2005 prices).4 It is approximately three
times higher than the 2◦C scenarios’ median carbon price throughout the century. In addition, in
the last two decades of the century the median carbon price in the 1.5◦C scenarios increases at more
than $1,000/tCO2/decade, a signpost of extreme challenge in achieving the low-carbon transition
(108, 109). Figure 2 also makes clear the large uncertainties associated with deep decarbonization,
especially to limit warming to 1.5◦C. These uncertainties have many sources, including boundary
assumptions about economic and population growth, energy and resource efficiency, and policy
(110), as well as different views about the marginal costs of emissions reductions, the degree
of substitutability of producers’ inputs and households’ consumption items, the determinants of
technological progress, the drivers of investment, and how to set carbon prices over time (111).

In the near term (over the period 2010–2030), 1.5◦C mitigation costs are estimated to be
approximately 150% higher than 2◦C costs, with longer-term (2010–2100) costs approximately
50% higher (99). These differentials reduce annual GDP growth by an average of approximately
0.04 percentage points per year over the period 2010–2100, compared with 2◦C scenarios, which
have average growth of 2.20%/year (112). More stringent scenarios will also require greater
investment, as demonstrated by the International Energy Agency’s “66% 2◦C” scenario, which
requires 25% higher investment in energy supply and demand technologies to 2050, compared
with a New Policies Scenario in line with current Paris pledges (113).

The additional costs of the 1.5◦C scenarios are felt through marginally higher electricity prices
by 2030 (99), but a detailed analysis of other sectoral and regional cost differences remains to

4A recent model intercomparison of scenarios achieving 1.5◦C across a range of socio-economic pathways suggests a median
carbon price of $137/tCO2 in 2030, rising to $3,200/tCO2 by 2100 (130), values which are broadly in line with the range
shown in Figure 2.
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Figure 2
Carbon prices ($2005) in 1.5◦C and 2◦C scenarios. Carbon prices for the <1.5◦C scenarios were computed from a scenario set obtained
by pooling the 37 scenarios in Reference 99 and the five scenarios in Reference 187 that have a >50% probability of limiting warming
to 1.5◦C by 2100. Carbon prices for the <2◦C scenarios were computed from the 125 scenarios in Reference 187 with a >50%
probability of limiting warming to between 1.75◦C and 2◦C.

be undertaken. As has been demonstrated for 2◦C scenarios (100, 108, 109), delayed mitigation
is likely to increase costs, as is globally fragmented action (114). Analysis of 2◦C scenarios also
suggests that different regions could face different mitigation costs, with fossil-fuel exporters
[Middle East OPEC (Organization of the Petroleum Exporting Countries), Russia, and Former
Soviet States of Central Asia] particularly affected (114), whereas global carbon trading regimes
could help lower overall mitigation costs by more than 50% compared with no-trade regimes
(115).

The more rapid decarbonization required by 1.5◦C scenarios is likely to result in a faster
realization of air quality benefits from reduced local pollutants. The value of such benefits has
been estimated to be in the range of $2–196/tCO2 (mean $49/tCO2), with the highest benefits in
developing countries (116). Strategies to decarbonize the power sector based on wind and solar
power are particularly beneficial in terms of reduced air and water pollution, whereas biomass has a
substantial land footprint and higher local environmental impacts than other renewables (99, 107).

Analysis of low-carbon pathways has been dominated by the use of energy systems models,
and this discussion has been no exception. However, these models have been criticized on several
grounds, including a lack of transparency regarding input assumptions, particularly on technology
costs (117); out-of-date technology cost projections, such as on solar photovoltaics and electric
vehicles (118, 119); a lack of representation of real-world technology innovation processes (120);
and a relative lack of focus on energy demand-side technologies and measures (121). In addition,
their reliance on negative emissions technologies to meet very stringent mitigation goals has been
called into question (122). Each of these limitations could have a significant impact on technology
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portfolios and mitigation cost estimates. Nonetheless, the models provide a useful, structured
method to assess technological possibilities to meet stringent climate targets using known or
feasible future technologies, and—when combined with other methods of scenario analysis such
as sector-specific models—they can provide important insights into the dynamics of the required
energy system transition.

4. CARBON DIOXIDE REMOVAL AND SOLAR RADIATION
MANAGEMENT TO LIMIT WARMING TO 1.5◦C
A central message from Section 3 is that keeping emissions within a 1.5◦C budget is significantly
costlier than an equivalent 2◦C budget. This high cost has redoubled interest in alternatives to
conventional mitigation involving large-scale interventions in the Earth system. These alternatives
are collectively known as geo-engineering and are typically grouped into two broad categories;
CDR and SRM. As its name suggests, CDR works by directly reducing the atmospheric GHG
concentration, whereas SRM operates on the planet’s energy balance between incoming shortwave
and outgoing longwave radiation.

Both techniques have been the subject of reviews from natural science (123–126) and economics
(127, 128) perspectives. The main CDR and SRM techniques are listed on the right side of
Figure 3. Rather than reviewing them individually, we structure our review around the high-level
characterization that Keith et al. (129) provide. Specifically, SRM is cheap and fast-acting, but
targets only one symptom of global climate change, namely, increasing temperatures (e.g., it does
not target ocean acidification). In contrast, CDR is expensive and slow-acting, but it addresses the
root cause of the problem, namely, the high GHG concentration in the atmosphere.

It is possible to obtain a back-of-the-envelope estimate of the additional direct deployment costs
of CDR and SRM. A recent model intercomparison suggests that net cumulative CO2 emissions
at the end of this century will be approximately 600 GtCO2 lower for the 1.5◦C target than the
2◦C target (median values) (130). Approximately 180 GtCO2 of this is due to additional CDR,
which is split roughly 2:1 between the two most prominent techniques, namely, BECCS, and
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MitigationMitigation
Mitigation under 
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• Bioenergy with carbon capture and storage (BECCS)
• Afforestation and reforestation (AR)
• Direct air carbon capture and storage (DACCS)
• Soil carbon sequestration and biochar (SCS&B)
• Enhanced weathering (EW)

SRM techniques

• Stratospheric aerosol injection
• Marine cloud brightening
• Cirrus cloud thinning
• Ground-based albedo management

Figure 3
CDR and SRM options and a hypothetical climate policy portfolio. A version of this figure originally appeared in Reference 188. It
loosely incorporates the results of the analysis in Reference 189 to illustrate the temperature impacts of two scenarios in 2100: “No
policy” and “Paris NDCs.”
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afforestation and reforestation (AR). Estimates of the technical potential and costs of BECCS and
AR suggest that removal at this scale is technically feasible and can be achieved at a total cost of
$5.1–13.5 trillion (131).5 However, assuming that the lowest-cost BECCS and AR opportunities
are exploited first, the actual cost is likely to be closer to the upper end of this range, because
meeting the 2◦C target itself relies heavily on these CDR techniques.

Using Lenton & Vaughan’s (125) results, we estimate that SRM calibrated to deliver
−0.3 W/m2 could substitute for 180 GtCO2 of CDR.6 Stratospheric aerosol injections or marine
cloud brightening could in theory reduce radiative forcing by this amount. Focusing for the time
being solely on the deployment cost, a system “capable of altering the radiative energy balance
in a measurable way and the associated observing and modelling capabilities for assessing their
radiative impact” would cost approximately $3–30 billion per year, per the National Research
Council (123, p. 147). This is trivial relative to current global GDP of approximately $75 trillion.
If deployed in perpetuity and assuming a discount rate of 5%, it is equivalent to $0.06–0.6 trillion,
which is one or two orders of magnitude cheaper than the direct deployment costs of removing
180 GtCO2 using BECCS and AR.

CDR and SRM may have significant external costs, however. In the case of BECCS and AR,
the additional land, water, and nutrient demand generated by large-scale deployment presents
enormous challenges for agricultural production, sustainability, and biodiversity (132, 133).7 In
this context, the heavy reliance on CDR of most IPCC 1.5◦C and 2◦C scenarios has drawn much
criticism in recent years (122, 134).

The deployment costs of SRM techniques are unlikely to be a significant barrier to their use.
On the contrary, precisely because these techniques are inexpensive, a nation may deploy them
unilaterally in response to real or perceived climate emergencies, or simply to set the global “ther-
mostat” to its preferred level. This renders the effective governance of SRM techniques extremely
difficult (135–138). Moreover, SRM deployment does little to address ocean acidification and can
impose spatially heterogeneous external costs, including changes in precipitation patterns, greater
ozone depletion, and reduced productivity of solar power generation. SRM also introduces new
risks; for example, the techniques’ effectiveness in controlling temperatures has not been tested in
field experiments, and the risk of rapid warming following an abrupt termination could be devas-
tating (139, 140). Some of these risks are “ambiguous” in the sense set out in Section 1, because
any relatively small-scale field experiment is unlikely to produce the data required to quantify the
emerging risks precisely (141).

Therefore, the role CDR and SRM can play in a broader climate policy portfolio remains an
open question. Several recent economic analyses have considered the characteristics of the least-
cost climate policy portfolio under highly stylized assumptions (142–149). Although the primary
focus of most is the interaction between mitigation and SRM, an emerging conclusion is that there
is room for both conventional mitigation and adaptation, as well as CDR and SRM in the policy
mix, consistent with the left side of Figure 3.

5The same study estimates the costs at $40–100/tCO2 for BECCS and $4–25/tCO2 for AR, which makes BECCS a very
expensive option relative to currently existing low-cost abatement opportunities in developing countries in Reference 190.
6We use the simple analytical approach for comparing geoengineering options Lenton & Vaughan (125) developed to calculate
the approximate radiative forcing equivalent of 180 GtCO2 of CDR. Assuming the atmospheric CO2 concentration in 2100 is
at the low end of the RCP2.6 scenario range in the IPCC Fifth Assessment Report, we compute this value to be −0.3 W/m2,
based on Lenton & Vaughan’s Equation 14 (125).
7DACCS and EW, listed in Figure 3, require substantial carbon-free energy, and their employment costs are much higher than
BECCS (132). In contrast, SCS&B can remove up to 5.2 GtCO2 per year and has a low impact on land/water/nutrient/energy
demand. Moreover, the deployment costs of SCS are relatively modest [$40–80 (SCS) and $117–135 (B) per tCO2, on the
basis of 131]. However, these techniques are constrained by sink saturation and reversibility (191).
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However, the results of these economic analyses depend sensitively on contestable assumptions
about the costs and risks of CDR and SRM in particular. A no-SRM portfolio, which achieves the
1.5◦C target, may well do so at much lower social cost than the portfolio depicted in Figure 3,
given the strongly negative side effects of SRM that are thereby avoided. The limited evidence on
SRM and some CDR techniques makes formidable the sustainability and governance challenges
that these techniques present, which is probably an important reason why public policy on geo-
engineering appears precautionary at this stage. To develop effective climate policies consistent
with the 1.5◦C target, the evidence base, particularly on SRM, needs to be strengthened urgently.
This may well imply new small-scale field experiments, as recommended by some of the world’s
leading scientific bodies (123, 124, 150).

5. IMPLICATIONS FOR MITIGATION POLICY

In broad terms, meeting the 1.5◦C target entails earlier emissions reductions across a broader
range of economic sectors and low-carbon technologies. But policymakers must decide how to
intensify mitigation policies while minimizing the increase in short- to medium-term costs (see
Section 3). Doing so would not only minimize the overall costs of a more ambitious climate goal;
it would also reduce political opposition from those most likely to bear any cost increases.

The main policy tool advocated by economists to reduce emissions in a cost-effective fashion
is carbon pricing (151–153).8 In the absence of market failures other than the GHG externality
itself, a common carbon price will ensure that mitigation is cost-effective. Producers will reduce
emissions up to the point where the marginal cost is equal to the carbon price. Consumers will
reduce purchases of carbon-intensive goods and services up to the point where their marginal
welfare benefits equal the price.

Carbon prices provide a pervasive incentive across all industries and households to reduce
emissions. This could be of particular importance, given that tightening the target to 1.5◦C places
extra emphasis on reductions in energy demand across the whole economy (see Section 3). Carbon
prices also provide an incentive for low-carbon innovation and combats the so-called rebound
effect that boosts demand for a carbon-intensive product when low-carbon innovation lowers its
price. An important advantage from the point of view of policymakers is that detailed knowledge
of the technologies available to producers, or the preferences of consumers, is not required. Most
methods of carbon pricing, such as carbon taxation or tradable emissions permits with initial
auctioning of quotas, raise revenue for governments, which can be used to compensate people
or firms hit particularly hard by carbon pricing. The flow of funds can also be used for other
climate-related objectives (154).

Section 3 reported modeling that suggests a global carbon price of more than $100/tCO2 would
be required as early as the 2020s, to limit warming to 1.5◦C. However, the contrast between
“ideal” carbon prices in energy systems models and real-world carbon prices is stark. At the
moment, 85% of global emissions are unpriced and approximately three-quarters of the rest are
priced below $10/tCO2 (153). Moreover, emissions are effectively subsidized through fossil-fuel
subsidies, which still amount to approximately 6.5% of global GDP and promote extensive use of
coal (155). Raising the price of emissions around the world and eliminating fossil-fuel subsidies are
all the more important in light of the 1.5◦C target. But these measures need to be accompanied by an

8The term carbon pricing is shorthand for pricing of emissions, including non-CO2 emissions (e.g., using 100-year global
warming potentials).
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understanding of their distributional consequences, which may require compensatory adjustments
to tax-benefit systems and poverty alleviation policies (e.g., 156, 157).

However, it is difficult to establish what the appropriate level of the carbon price is and how it
should change over time. Section 3 illustrated and diagnosed the large uncertainties about future
carbon prices. These uncertainties are not just a curiosity within the research community; they
also affect real-world expectations, where uncertainty is further fueled by, and reflected in, price
volatility in schemes such as the European Union’s Emissions Trading System (158). This is
likely to have discouraged low-carbon investment and innovation, for example in CCS (159). So
limiting warming to 1.5◦C requires not only higher carbon prices across a much higher proportion
of emissions, but also less volatile pricing over time with greater predictability of future carbon
prices. An officially sanctioned guide price or pricing corridor might help (153, 160).

More importantly, carbon pricing is only directed at one source of market failure, GHG
emissions. There are several other market failures that may impede cost-effective mitigation. The
1.5◦C target requires greater action on these fronts, as well. It is well-known that R&D is likely to
be undersupplied in a competitive market, because new knowledge is a public good and it is difficult
to establish property rights over new ideas. Public subsidy of low-carbon research can help rectify
this problem and reduce the size of the incentive to private researchers that carbon pricing would
need to provide (161). However, public spending on R&D in the energy sector has fallen back as a
share of total public R&D spending (162), and there is evidence that public support for renewable
energy has been skewed toward deployment subsidies, instead of R&D and demonstration projects
(163). Other market failures that require more attention include short-termism and principal-
agent problems in infrastructure provision (including housing), the difficulties in establishing
new networks (e.g., power grids and transport systems), and coordination problems in location
decisions (e.g., city design and zoning laws). Reducing demand for high-carbon products is one
area where many researchers have concluded price signals may need to be supplemented (164),
including by exploiting insights from psychology and behavioral economics (165), although some
debate the merits of such “nudging” (166). Emissions from nonmarket sectors such as subsistence
farming and the natural environment require special attention, given the difficulties of introducing
market mechanisms on the timescale required, even where this is seen as desirable in the long run.
This is a particular problem for many developing countries. Section 3 pointed out that abatement
of land-use emissions plays a key role in most 1.5◦C scenarios.

A case can also be made for more direct command and control measures under the 1.5◦C target.
The lower temperature target reduces the technological options available, so that certain economic
choices appear unavoidable. Relying on the necessarily uncertain effects of intermediary policy
measures, such as carbon pricing and technology-blind R&D support, can be risky. For example,
BECCS and other means of CDR become crucial in 1.5◦C scenarios (see Section 3). Some have
therefore argued for mandatory sequestration (167). The inadequacy to date of carbon pricing in
stimulating private R&D has encouraged more direct approaches, such as the mission-oriented
new Apollo Program to combat climate change (168). Some researchers have found that setting
standards is more effective in reducing emissions and more acceptable to public opinion, despite
its costs (111). On this view, there may not be time to adjust economic instruments, such as a
carbon price, in response to learning more about their potency.

However, command and control methods are often considerably more expensive than market
instruments. This is demonstrated in the automotive sector, for example (169), where corporate
automotive fuel economy standards place a heavier burden on the economy than an increase
in gasoline prices (170). There is no escape from the need for careful evaluation of all policy
instruments in theory and practice; exercises in this vein, such as those in References 171 and 172,
are becoming more common.
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At the international level, adoption of the 1.5◦C ceiling suggests three priorities for policy
making. First, successive UNFCCC summits must keep up the pressure on countries to adopt
more ambitious NDCs. Second, the flow of finance to developing countries that adopt strong
NDCs must be increased. The theoretical desirability of a global carbon price depends on there
being appropriate lump-sum transfers to compensate the heaviest losers. Various schemes have
been devised for equitable transfers among nations to accompany global carbon pricing, or other
ways to make climate action fair (173–176). Empirically, it appears that mitigation opportunities
are disproportionately concentrated in developing countries (177). Without appropriate receipts,
developing countries will be unlikely to set as high a carbon price as developed countries (153),
with adverse consequences for global efforts on aggregate and for cost-effectiveness. Third, better
mechanisms to encourage the international dissemination of low-carbon technologies are required.
These could build on the global Technology Mechanism established by the Paris Agreement, but
they need to be incorporated in broader efforts to promote sustainable low-carbon development,
as well.

6. CONCLUSIONS

This review has compared the benefits and costs of limiting warming to 1.5◦C and has de-
veloped the implications of the 1.5◦C target for mitigation policy. Because of space con-
straints, several other important issues have been ignored, e.g., adaptation policy. Interested
readers are directed to the IPCC’s extensive Special Report on Global Warming of 1.5◦C
(http://www.ipcc.ch/report/sr15/).

Section 2 detailed many potential benefits of limiting warming to 1.5◦C, while emphasizing
the uncertainties. The impacts avoided by limiting warming to 1.5◦C compared with 2◦C are
significant for water resources, agriculture, and human health and are particularly large in poorer
regions. SIDS, parts of Southeast Asia, and the Mediterranean are among the regions that would
benefit most. Limiting warming to 1.5◦C would provide particularly large benefits to natural
ecosystems. Arctic summer sea ice would also be preserved. A key issue is whether limiting warming
to 1.5◦C reduces the risk of crossing climate tipping points. Although there is evidence to suggest
that it would, the reduction in risk cannot presently be quantified.

Section 3 showed that the remaining carbon budget consistent with 1.5◦C is very small and
that the global economy would need to be decarbonized at an unprecedented rate. According to
energy systems models, a global carbon price of more than $100/tCO2 would be required as early as
2020 (approximately three times higher than the carbon price necessary to limit warming to 2◦C),
more if policy implementation is delayed and fragmented. Indeed, any further delay likely renders
the 1.5◦C target unattainable by conventional means. Scenarios that limit warming to 1.5◦C involve
particularly large reductions in energy demand across the whole economy, and heavy reliance on
negative emissions technologies, principally BECCS. Large-scale BECCS brings with it large
environmental risks. Fossil-fuel exporters are likely to bear disproportionate mitigation costs.

Despite our reservations, the question of whether limiting warming to 1.5◦C would pass a cost-
benefit test in a formal, model-based assessment is an “elephant in the room”; we offer a relatively
simple and transparent approach within this tradition, in the sidebar titled Formal Assessment of
Whether 1.5◦C Warming Is Economically Efficient (see also Table 1). The main point it makes
is that the uncertainties about the economic benefits and costs of limiting warming to 1.5◦C are so
large, particularly on the benefits side, that 1.5◦C is within the range of peak temperature increases
that could be optimal from an economic standpoint. We think this conclusion also flows from
the informal comparison of benefits and costs in Sections 2 and 3, where issues such as regional
distribution, natural ecosystems, co-benefits, and ambiguity can be more fully incorporated.
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FORMAL ASSESSMENT OF WHETHER 1.5◦C WARMING IS ECONOMICALLY
EFFICIENT

Historically, economists have built numerically solved IAMs to carry out CBA of climate targets. These cost-benefit
IAMs have delivered many key insights, but they have been repeatedly criticized for resting on shaky empirics (e.g.,
1–3). They are also complex enough to be branded “black boxes,” stimulating recent interest in simpler analytical
models (14–16), especially given the limitations of the underlying data, which mean that intricate modeling may
not be warranted. Initial tests show these simpler models are able to closely replicate the results of more complex
cost-benefit IAMs under comparable assumptions (15).

In this new tradition of analytical modeling, Dietz & Venmans (179) make use of the linear relationship between
cumulative CO2 emissions and warming to derive an expression for optimal peak warming, T∗:

T∗ = [ρ − n + (η − 1) g] φ

ζγ
,

where ρ is the pure rate of time preference and η is the elasticity of marginal utility. (This expression for T∗ is
not valid for emissions paths that temporarily overshoot 1.5◦C.) These are parameters determining the discount
rate (the discount rate r = ρ + ηg). Population growth is represented by n and growth of GDP per capita by g;
these are assumed constant. ϕ is the marginal cost of zero emissions, ζ is the Transient Climate Response to
Cumulative Carbon Emissions (TCRE), a physical parameter, and γ is the coefficient of the damage function.
Table 1 lists the parameter values we assume and their sources.

Dietz & Venmans find that T∗ depends sensitively on most of these parameters, and most of these parameters
are subject to large uncertainty. This means that T∗ itself is highly uncertain, which is consistent with the state of
the wider literature on CBA of climate change.

Arguably, there is especially poor evidence on damages, γ (3, 178). Therefore, we use the above formula for
optimal peak warming to ask the following question: On the basis of representative values of the other parameters,
how large would damages have to be for optimal peak warming to be 1.5◦C?

We find that T∗ = 1.5◦C if γ = 0.0412, which corresponds with the assumption that 3◦C warming, which is a
common point of comparison, would result in a welfare loss equivalent to 9.8% of global GDP. [To replicate this
calculation, the damage function D(T) = exp(–γ /2∗T 2).] Compared with most of the literature on damages, this is an
outlier. According to Nordhaus & Moffat’s (180) recent survey, mean damages at 3◦C are approximately 2% of global
GDP, with a 95th percentile estimate of 6.5%. However, in stark contrast, recent empirical analysis of how temper-
ature fluctuations have affected GDP growth worldwide since the middle of the twentieth century suggests much
higher damages; 9.8% of global GDP at 3◦C is close to the middle of the range of estimates from this work (181).

There are unanswered questions about the validity of these recent empirical estimates, compared with the prior
literature. The quality of these recent estimates is much higher in a statistical sense, although they may lack external
validity, having been derived from past data and from climate fluctuations over small periods (182, 183). They do
not include the “nonmarket” impacts of climate change, such as on health and natural ecosystems. And none of
the damage estimates discussed here includes the co-benefits of reducing emissions in terms of improved local air
quality (see Section 3). However, the mitigation cost estimates reflected in the ϕ parameter do not incorporate the
environmental risks of mitigation, notably of large-scale BECCS (see Section 2).

The alternative way to limit warming to 1.5◦C is to make use of CDR techniques over and
above those deployed in energy systems models and/or SRM. Such CDR techniques are expensive
and slow-acting. Some SRM techniques are cheap and fast-acting, but they pose ambiguous risks
to the environment. Whether society is prepared to take these risks is a value judgement, but its
revealed preference to date is to not take such risks.
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Table 1 Parameter values for T∗

Parameter Value Source

ρ 1.1% Expert survey (184)

η 1.35 Expert survey (184)

n 0.5% UN population projections (185)

g 2.06% Expert survey (186)

ϕ 0.00126 Intergovernmental Panel on Climate Change (IPCC) AR5 Working
Group III multiple models (106)

ζ 0.00048 IPCC AR5 Working Group I multiple models (49)

The case for carbon pricing has been made many times, but it is at least as important to do
so in relation to limiting warming to 1.5◦C. The potential cost savings from decentralizing the
incentive to reduce emissions and bringing marginal abatement costs toward equality are very
large. However, not only is there a strong normative case to complement carbon pricing with
other policy tools, due to multiple market failures and barriers to mitigation, the urgency of the
challenge here and the seemingly essential role of some technologies such as carbon sequestration
make the case for more interventionist policy measures. At the international level, the Paris process
must find a way to ratchet up the ambition of NDCs quickly, and channel finance and technology
to developing countries to take advantage of cheap abatement.

SUMMARY POINTS

1. Due to large uncertainties about the economic costs and, in particular, the benefits, there
can be no clear answer to the question of whether the 1.5◦C target passes a cost-benefit
test.

2. The benefits of limiting warming to 1.5◦C, compared with 2◦C, are particularly significant
for natural ecosystems and they are also significant for water resources, agriculture, and
human health, especially in poorer regions of the world. There is evidence to suggest
that limiting warming to 1.5◦C reduces the risk of crossing climate tipping points, such
as melting of the Greenland and Antarctic ice sheets, but the reduction in risk cannot
presently be quantified.

3. The remaining carbon budget consistent with 1.5◦C is very small and the global economy
would need to be decarbonized at an unprecedented rate to stay within it, likely entailing
large costs.

4. Scenarios that limit warming to 1.5◦C involve particularly large reductions in energy
demand across the whole economy and heavy reliance on negative emissions technologies,
principally bioenergy with CCS.

5. Any further delay in pursuing an emissions path consistent with 1.5◦C likely renders
that target unattainable by conventional means, instead relying on expensive large-scale
CDR, or risky solar radiation management.

6. The case for carbon pricing as the central plank of mitigation policy is stronger than
ever, although there may be a place for more interventionist policies alongside it, given
the urgency, the political economy, and the existence of other market failures.
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7. The UNFCCC/Paris process must find a way to ratchet up the ambition of NDCs
quickly, and channel finance and technology to developing countries to take advantage
of cheap abatement.

FUTURE ISSUES

1. How can cost-benefit analysis best give reliable decision support in situations involving
very long timescales, global scope, deep uncertainties, and significant nonmarket benefits?

2. Although a literature on the benefits of reducing warming to 1.5◦C is rapidly emerging,
there needs to be better quantification of the uncertainties surrounding these benefits,
both within and between models.

3. There needs to be more focus in the future on quantifying the benefits and costs of
limiting warming to 1.5◦C at the regional level.

4. Can the reduction in the risk of crossing key tipping points in the global climate system,
brought about by limiting warming to 1.5◦C, be quantified?

5. What is the 1.5◦C carbon budget?

6. Can the environmental risks associated with solar radiation management by quantified,
could field experiments help in this effort, and how could solar radiation management be
effectively governed at the global level?

7. Given its centrality in most 1.5◦C scenarios, how can policy effectively promote the
deployment of carbon capture and storage (CCS) technology?

8. What policies are effective in rapidly reducing energy demand, as well as rapidly increas-
ing the electrification of, the residential buildings, and transportation sectors?
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