94 research outputs found

    Directional calibration of wave reanalysis databases using instrumental data

    Get PDF
    Wave reanalysis databases (WRDBs) offer important advantages for the statistical characterization of wave climate (continuous time series, good spatial coverage, constant time span, homogeneous forcing, and more than a 40-yr-long time series) and for this reason, they have become a powerful tool for the design of offshore and coastal structures. However, WRDBs are not quantitatively perfect and corrections using instrumental observations must be addressed before they are used; this process is called calibration. The calibration is especially relevant near the coast and in areas where the orography is complex, since in these places the inaccuracy of WRDB is evident because of the bad description of the wind fields (i.e., insufficient forcing resolution). The quantitative differences between numerical and instrumental data suggest that different corrections should be applied depending on the mean direction of the sea state. This paper proposes a calibration method based on a nonlinear regression problem, where the corresponding correction parameters vary smoothly along the possible wave directions by means of cubic splines. The correction of significant wave height is performed using instrumental data: (i) buoy records and/or (ii) satellite data. The performance of the method is illustrated considering data from different locations around SpainThe authors thank Puertos del Estado (Spanish State Port) for providing the information from the wave reanalysis data base. R. Mínguez is indebted to the Spanish Ministry MICINN for the funding provided within the Ramon y Cajal program. This work was partly funded by projects GRACCIE (CSD2007-00067, ProgramaConsolider-Ingenio 2010) and AMVAR (CTM2010-15009) from the Spanish Ministry MICINN, by Project C3E (200800050084091) from the Spanish Ministry MAMRM, and by Project MARUCA (E17/08) from the Spanish Ministry MF

    Low-diffusion Xe-He gas mixtures for rare-event detection: electroluminescence yield

    Get PDF
    High pressure xenon Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification are being proposed for rare event detection such as directional dark matter, double electron capture and double beta decay detection. The discrimination of the rare event through the topological signature of primary ionisation trails is a major asset for this type of TPC when compared to single liquid or double-phase TPCs, limited mainly by the high electron diffusion in pure xenon. Helium admixtures with xenon can be an attractive solution to reduce the electron diffu- sion significantly, improving the discrimination efficiency of these optical TPCs. We have measured the electroluminescence (EL) yield of Xe–He mixtures, in the range of 0 to 30% He and demonstrated the small impact on the EL yield of the addition of helium to pure xenon. For a typical reduced electric field of 2.5 kV/cm/bar in the EL region, the EL yield is lowered by ∼ 2%, 3%, 6% and 10% for 10%, 15%, 20% and 30% of helium concentration, respectively. This decrease is less than what has been obtained from the most recent simulation framework in the literature. The impact of the addition of helium on EL statistical fluctuations is negligible, within the experimental uncertainties. The present results are an important benchmark for the simulation tools to be applied to future optical TPCs based on Xe-He mixtures. [Figure not available: see fulltext.]

    Methodology for integrated socio-economic assessment of offshore platforms : towards facilitation of the implementation of the marine strategy framework directive

    Get PDF
    In this paper a Methodology for Integrated Socio-Economic Assessment (MISEA) of the viability and sustainability of different designs of Multi-Use Offshore Platforms (MUOPs) is presented. MUOPs are designed for multi-use of ocean space for energy extraction (wind power production and wave energy), aquaculture and transport maritime services. The developed methodology allows identification, valuation and assessment of: the potential range of impacts of a number of feasible designs of MUOP investments, and the likely responses of those impacted by the investment project. This methodology provides decision-makers with a valuable decision tool to assess whether a MUOP project increases the overall social welfare and hence should be undertaken, under alternative specifications regarding its design, the discount rate and the stream of net benefits, if a Cost-Benefit Analysis (CBA) is to be followed or sensitivity analysis of selected criteria in a Multi-Criteria Decision Analysis (MCDA) framework. Such a methodology is also crucial for facilitating of the implementation of the Marine Strategy Framework Directive (MSFD adopted in June 2008) that aims to achieve good environmental status of the EU's marine waters by 2020 and to protect the resource base upon which marine-related economic and social activities depend. According to the MSFD each member state must draw up a program of cost-effective measures, while prior to any new measure an impact assessment which contains a detailed cost-benefit analysis of the proposed measures is required

    Technical summary

    Get PDF
    Human interference with the climate system is occurring. Climate change poses risks for human and natural systems. The assessment of impacts, adaptation, and vulnerability in the Working Group II contribution to the IPCC's Fifth Assessment Report (WGII AR5) evaluates how patterns of risks and potential benefits are shifting due to climate change and how risks can be reduced through mitigation and adaptation. It recognizes that risks of climate change will vary across regions and populations, through space and time, dependent on myriad factors including the extent of mitigation and adaptation

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Demonstration of the event identification capabilities of the NEXT-White detector

    Get PDF
    [EN] In experiments searching for neutrinoless double-beta decay, the possibility of identifying the two emitted electrons is a powerful tool in rejecting background events and therefore improving the overall sensitivity of the experiment. In this paper we present the first measurement of the efficiency of a cut based on the different event signatures of double and single electron tracks, using the data of the NEXT-White detector, the first detector of the NEXT experiment operating underground. Using a 228Th calibration source to produce signal-like and background-like events with energies near 1.6 MeV, a signal efficiency of 71.6 ± 1.5 stat ± 0.3 sys% for a background acceptance of 20.6 ± 0.4 stat ± 0.3 sys% is found, in good agreement with Monte Carlo simulations. An extrapolation to the energy region of the neutrinoless double beta decay by means of Monte Carlo simulations is also carried out, and the results obtained show an improvement in background rejection over those obtained at lower energies.The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787NEXT; the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreements No. 674896, 690575 and 740055; the Ministerio de Economia y Competitividad and the Ministerio de Ciencia, Innovacion y Universidades of Spain under grants FIS2014-53371-C04, RTI2018-095979, the Severo Ochoa Program SEV-2014-0398 and the Maria de Maetzu Program MDM-2016-0692; the GVA of Spain under grants PROMETEO/2016/120 and SEJI/2017/011; the Portuguese FCT under project PTDC/FIS-NUC/2525/2014, under project UID/FIS/04559/2013 to fund the activities of LIBPhys, and under grants PD/BD/FBD/105921/2014, SFRH/BPD/109180/2015 and SFRH/BPD/76842/2011; the U.S. Department of Energy under contracts number DE-AC02-06CH11357 (Argonne National Laboratory), DE-AC02-07CH11359 (Fermi National Accelerator Laboratory), DE-FG02-13ER42020 (Texas A&M) and DE-SC0019223/DE-SC0019054 (University of Texas at Arlington); and the University of Texas at Arlington. DGD acknowledges Ramon y Cajal program (Spain) under contract number RYC-2015-18820. We also warmly acknowledge the Laboratori Nazionali del Gran Sasso (LNGS) and the Dark Side collaboration for their help with TPB coating of various parts of the NEXT-White TPC. Finally, we are grateful to the Laboratorio Subterraneo de Canfranc for hosting and supporting the NEXT experiment.Ferrario, P.; Benlloch-Rodríguez, J.; Díaz López, G.; Hernando Morata, J.; Kekic, M.; Renner, J.; Usón, A.... (2019). Demonstration of the event identification capabilities of the NEXT-White detector. Journal of High Energy Physics (Online). (10):1-17. https://doi.org/10.1007/JHEP10(2019)052S11710M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett.B 174 (1986) 45 [ INSPIRE ].EXO-200 collaboration, Improved measurement of the 2νββ half-life of136Xe with the EXO-200 detector, Phys. Rev.C 89 (2014) 015502 [ arXiv:1306.6106 ] [ INSPIRE ].XENON collaboration, Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett.121 (2018) 111302 [ arXiv:1805.12562 ] [ INSPIRE ].Caltech-Neuchâtel-PSI collaboration, Search for ββ decay in136Xe: new results from the Gotthard experiment, Phys. Lett.B 434 (1998) 407 [ INSPIRE ].NEXT collaboration, First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment, JHEP01 (2016) 104 [ arXiv:1507.05902 ] [ INSPIRE ].NEXT collaboration, The Next White (NEW) detector, 2018 JINST13 P12010 [ arXiv:1804.02409 ] [ INSPIRE ].M. Redshaw, E. Wingfield, J. McDaniel and E.G. Myers, Mass and double-beta-decay Q value of136Xe, Phys. Rev. Lett.98 (2007) 053003 [ INSPIRE ].NEXT collaboration, Initial results on energy resolution of the NEXT-White detector, 2018 JINST13 P10020 [ arXiv:1808.01804 ] [ INSPIRE ].NEXT collaboration, Energy calibration of the NEXT-White detector with 1% resolution near Qββ of136Xe, arXiv:1905.13110 [ INSPIRE ].NEXT collaboration, Electron drift properties in high pressure gaseous xenon, 2018 JINST13 P07013 [ arXiv:1804.01680 ] [ INSPIRE ].T.H. Cormen, C. Stein, R.L. Rivest and C.E. Leiserson, Introduction to algorithms, 2nd ed., McGraw-Hill Higher Education, U.S.A. (2001).NEXT collaboration, Calibration of the NEXT-White detector using83mKr decays, 2018 JINST13 P10014 [ arXiv:1804.01780 ] [ INSPIRE ].J. Martín-Albo, The NEXT experiment for neutrinoless double beta decay searches, Ph.D. thesis, Valencia U., IFIC, Valencia, Spain (2015).GEANT4 collaboration, GEANT4: a simulation toolkit, Nucl. Instrum. Meth.A 506 (2003) 250 [ INSPIRE ].J.J. Gomez-Cadenas et al., Sense and sensitivity of double beta decay experiments, JCAP06 (2011) 007 [ arXiv:1010.5112 ] [ INSPIRE ].NEXT collaboration, Radiogenic backgrounds in the NEXT double beta decay experiment, arXiv:1905.13625 [ INSPIRE ].NEXT collaboration, Background rejection in NEXT using deep neural networks, 2017 JINST12 T01004 [ arXiv:1609.06202 ] [ INSPIRE ].NEXT collaboration, Application and performance of an ML-EM algorithm in NEXT, 2017 JINST12 P08009 [ arXiv:1705.10270 ] [ INSPIRE ].NEXT collaboration, Secondary scintillation yield of xenon with sub-percent levels of CO2 additive for rare-event detection, Phys. Lett.B 773 (2017) 663 [ arXiv:1704.01623 ] [ INSPIRE ].NEXT collaboration, Electroluminescence TPCs at the thermal diffusion limit, JHEP01 (2019) 027 [ arXiv:1806.05891 ] [ INSPIRE ].R. Felkai et al., Helium-xenon mixtures to improve the topological signature in high pressure gas xenon TPCs, Nucl. Instrum. Meth.A 905 (2018) 82 [ arXiv:1710.05600 ] [ INSPIRE ].NEXT collaboration, Electron drift and longitudinal diffusion in high pressure xenon-helium gas mixtures, 2019 JINST14 P08009 [ arXiv:1902.05544 ] [ INSPIRE ].NEXT collaboration, Sensitivity of NEXT-100 to neutrinoless double beta decay, JHEP05 (2016) 159 [ arXiv:1511.09246 ] [ INSPIRE ].J. Muñoz Vidal, The NEXT path to neutrino inverse hierarchy, Ph.D. thesis, Valencia U., IFIC, Valencia, Spain (2018)

    Sensitivity of the NEXT experiment to Xe-124 double electron capture

    Get PDF
    Double electron capture by proton-rich nuclei is a second-order nuclear process analogous to double beta decay. Despite their similarities, the decay signature is quite different, potentially providing a new channel to measure the hypothesized neutrinoless mode of these decays. The Standard-Model-allowed two-neutrino double electron capture (2¿EC EC) has been predicted for a number of isotopes, but only observed in 78Kr, 130Ba and, recently, 124Xe. The sensitivity to this decay establishes a benchmark for the ultimate experimental goal, namely the potential to discover also the lepton-number-violating neutrinoless version of this process, 0¿EC EC. Here we report on the current sensitivity of the NEXT-White detector to 124Xe 2¿EC EC and on the extrapolation to NEXT-100. Using simulated data for the 2¿EC EC signal and real data from NEXT-White operated with 124Xe-depleted gas as background, we define an optimal event selection that maximizes the NEXT-White sensitivity. We estimate that, for NEXT-100 operated with xenon gas isotopically enriched with 1 kg of 124Xe and for a 5-year run, a sensitivity to the 2¿EC EC half-life of 6 × 1022 y (at 90% confidence level) or better can be reached. [Figure not available: see fulltext.

    Energy calibration of the NEXT-White detector with 1% resolution near Qßß of 136Xe

    Get PDF
    Excellent energy resolution is one of the primary advantages of electroluminescent high-pressure xenon TPCs. These detectors are promising tools in searching for rare physics events, such as neutrinoless double-beta decay (ßß0¿), which require precise energy measurements. Using the NEXT-White detector, developed by the NEXT (Neutrino Experiment with a Xenon TPC) collaboration, we show for the first time that an energy resolution of 1% FWHM can be achieved at 2.6 MeV, establishing the present technology as the one with the best energy resolution of all xenon detectors for ßß0¿ searches. [Figure not available: see fulltext

    Low-diffusion Xe-He gas mixtures for rare-event detection: electroluminescence yield

    Get PDF
    High pressure xenon Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification are being proposed for rare event detection such as directional dark matter, double electron capture and double beta decay detection. The discrimination of the rare event through the topological signature of primary ionisation trails is a major asset for this type of TPC when compared to single liquid or double-phase TPCs, limited mainly by the high electron diffusion in pure xenon. Helium admixtures with xenon can be an attractive solution to reduce the electron diffu- sion significantly, improving the discrimination efficiency of these optical TPCs. We have measured the electroluminescence (EL) yield of Xe–He mixtures, in the range of 0 to 30% He and demonstrated the small impact on the EL yield of the addition of helium to pure xenon. For a typical reduced electric field of 2.5 kV/cm/bar in the EL region, the EL yield is lowered by ~ 2%, 3%, 6% and 10% for 10%, 15%, 20% and 30% of helium concentration, respectively. This decrease is less than what has been obtained from the most recent simulation framework in the literature. The impact of the addition of helium on EL statistical fluctuations is negligible, within the experimental uncertainties. The present results are an important benchmark for the simulation tools to be applied to future optical TPCs based on Xe-He mixtures
    corecore