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ABSTRACT

Wave reanalysis databases (WRDBs) offer important advantages for the statistical characterization of

wave climate (continuous time series, good spatial coverage, constant time span, homogeneous forcing, and

more than a 40-yr-long time series) and for this reason, they have become a powerful tool for the design of

offshore and coastal structures. However, WRDBs are not quantitatively perfect and corrections using in-

strumental observations must be addressed before they are used; this process is called calibration. The cali-

bration is especially relevant near the coast and in areas where the orography is complex, since in these places

the inaccuracy of WRDB is evident because of the bad description of the wind fields (i.e., insufficient forcing

resolution). The quantitative differences between numerical and instrumental data suggest that different

corrections should be applied depending on the mean direction of the sea state. This paper proposes a cali-

bration method based on a nonlinear regression problem, where the corresponding correction parameters

vary smoothly along the possible wave directions by means of cubic splines. The correction of significant wave

height is performed using instrumental data: (i) buoy records and/or (ii) satellite data. The performance of the

method is illustrated considering data from different locations around Spain.

1. Introduction

Over the last few years, the development of wave

reanalysis models has allowed for a detailed description

of the wave climate in locations where long-term buoy

records are not available. For this reason, they have

become a powerful tool used for the design of offshore

and coastal structures, since they provide long continu-

ous time series records with good spatial coverage.

However, reanalysis models are simplifications of reality

that also use discrete forcing fields consisting of surface

winds at different times, and quantitative results present

differences when compared with recent instrumental

data [buoys and/or satellite; see Caires and Sterl (2005);

Cavaleri and Sclavo (2006)]. Cavaleri and Bertotti (2004)

pointed out that when the orography is complex, the

reanalysis inaccuracy becomes more evident because of

the bad description of wind fields, which does not have

the appropriate spatial and temporal resolution.The

definition of the wave climate is crucial for coastal

management and design, and there has been an

increased interest in collecting information through in-

strumental devices, mainly using buoys and satellite al-

timetry. Buoys provide time series records of different

ocean climate variables such as significant wave height,

wave direction, wave period, currents, wind direction,

etc., depending on the type of device. This information is

very valuable for coastal design, however, it is only valid

for the buoy location and in most cases the time series

have interruptions due to disruptions on the normal use

caused by buoy failure. Since the 1970s, several satellite

missions [Skylab, the Goddard Earth Observing System-

3 (GEOS-3), Seasat, Geosat, the Ocean Topography

Experiment (TOPEX)/Poseidon, the European Remote

Sensing Satellite-1 and -2 (ERS-1 and ERS-2), Geosat

Follow-On (GFO), Jason-1, the Environmental Satellite

(Envisat), and Jason-2] incorporate altimetry sensors

that allow for the evaluation of different ocean climate

variables, such as significant wave height with a high

level of precision (63 cm; Krogstad and Barstow 1999).

Altimetry data consist of information about significant

wave height, among others variables, at different loca-

tions and time frames. However, with these two sources

of information: buoys and altimetry, we do not have

a temporal and spatial homogeneous record of ocean

wave climate variables for design purposes. This reason

has motivated an increased interest in the development
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of different wave generation models such as the Wave

Ocean Model (WAM; see the WAMDI Group 1988),

which using wind fields as input data, try to reproduce

the evolution of wave generation and propagation on an

homogeneous framework, both in time and space. These

wind wave numerical databases provide continuous re-

cords of significant wave height, mean period, and mean

direction, which are the key parameters for wave climate

characterization, on a regular time basis (hourly or

3-hourly) over a defined grid. This information set has

the advantages of both buoy and altimetry data (i.e., ho-

mogeneous spatial and temporal characteristics); how-

ever, as it has been pointed out by several authors, results

are subject to bias with respect to instrumental data.

Cavaleri and Sclavo (2006) summarized the main charac-

teristics of these sources of information as follows:

d Buoys: accurate, frequent (typically at 3-h intervals),

but limited in number, very sparse, and mostly close to

coasts;
d Satellites: good accuracy, except for very low and high

values, continuous, but very intermittent at a given

location, difficulties in working close to coast; and
d Numerical models: continuous in space and time, full

information (wave spectrum), but often underesti-

mated in enclosed basins.

Note that wave hindcasting usually refers to a numeri-

cal model integration over a historical period without

assimilating observations, since oceanographic obser-

vations, such as the significant wave height, are much

scarcer than meteorological observations, and it has

been considered adequate for generating a reasonable

representation of wave climate with little need for a full

reanalysis. On the other hand, reanalysis models in-

corporate observational information within the process.

Note that the term ‘‘wave reanalysis’’ is usually adopted

in the wave climate scientific community to indicate that

it is forced by a wind atmospheric reanalysis which as-

similates observations. For this reason, we prefer to use

the term ‘‘reanalysis’’ instead of ‘‘hindcast.’’ Thus, data

for the case studies presented, properly speaking, come

from hindcast models without assimilating instrumental

observations.

Since the three sources of information have advan-

tages and drawbacks, several attempts to combine this

information have been presented in the literature. Caires

and Sterl (2005) proposed a nonparametric method

to correct model data. At any given point in space and

time the correction is determined from analogs in a learn-

ing dataset. This dataset contains model data and simulta-

neous observations and it is applied to the significant wave

height dataset of the 40-yr European Centre for Medium-

Range Weather Forecasts Re-Analysis (ERA-40). Cavaleri

and Sclavo (2006) made use of the overall information on

models, buoys, and satellite to obtain calibrated decadal

time series at a large number of points, distributed at 0.58

intervals in the Mediterranean Sea. These two approaches

are applied on a point-to-point basis without considering

either the spatial correlation between neighbor nodes or

the wave direction. In an attempt to include spatial cor-

relation in the calibration procedure, Tomás et al. (2008)

proposed a spatial calibration procedure based on em-

pirical orthogonal functions and a nonlinear transforma-

tion of the spatial–time modes. However, the method

proposed by Tomás et al. (2008) assumes a prior distri-

bution function of the data all around the study area,

which may not be valid for certain cases, and it is suitable

for global hindcast datasets.

As a result of the characteristics of reanalysis models,

which are primarily fed using wind data, it is known that

inaccuracies of wave reanalysis databases (WRDB) are

mostly dependent on the bad description of the wind fields

(see Feng et al. 2006), that is, insufficient forcing resolution.

In coastal areas, there are additional factors that contribute

to poor model performance such as inappropriate shallow-

water physics in wave models, unresolved island blocking,

imperfect bathymetry, etc. (see Cavaleri et al. 2007 for

a summary). The quantitative differences between nu-

merical and instrumental data suggests that different

corrections should be applied depending on the mean

direction of the sea state (i.e., for directions where the

wind resolution is not enough to capture the local wind

wave generation, but not for swell waves generated in

areas where the wind resolution is sufficient to reproduce

the wave dynamics). Tomás (2009) proposes a calibration

method where the parameters depend on the wave di-

rection using harmonic functions. Mackay et al. (2010a,b)

also point out the necessity of hindcast calibration in the

context of wind energy resource assessment.

The aim of this paper is to present a new parametric

calibration method based on a nonlinear regression prob-

lem with the following characteristics:

1) It manages to combine buoy, satellite, and model

data.

2) The correction parameters vary smoothly along the

possible mean wave directions by means of cubic

splines, allowing different corrections depending on

the wave direction.

3) Corrections are made on empirical quantile infor-

mation on a Gumbel probability paper scale. This

allows to give more weight on the calibration pro-

cedure to the maximum data, which is more impor-

tant from the design point of view.

4) Classic regression theory is applied to the calculation

of the confidence intervals for parameters estimates

NOVEMBER 2011 M Í N G U E Z E T A L . 1467



and corrected values, giving an idea of the uncer-

tainty associated with the calibration process.

The paper is organized as follows. In section 2, we

present the nonlinear regression problem to be used for

calibration purposes, analyzing in detail how the pa-

rameters are modeled via spline functions and it de-

scribes the complete calibration methodology including

the diagnostic analysis and uncertainty characterization.

Section 3 illustrates the functioning of the method through

several examples on different locations around Spain,

and in section 4 the effect of directional uncertainty on

those locations is analyzed. Finally, in section 5 relevant

conclusions are duly drawn.

2. Nonlinear regression model

The intrinsically (nonlinearizable) nonlinear regres-

sion model can be written as

yi 5 f (xi;b)1 «i, i5 1, 2, . . . , nd, (1)

where yi is the ith value of the response variable, xi is a

k3 1 vector of predictor variables corresponding to the

ith observation, and ei is a random error. The function f

is known and nonlinear in the parameter vector b. The

most popular method for estimating the regression pa-

rameters b is the least squares (LS) method, where we

minimize the sum of squared distances between ob-

served and predicted values, that is,

Minimize
b

ZLS 5 eTe5�
n
d

i51
[yi 2 f (xi; b)]2, (2)

where e are the residuals, which are assumed to be un-

correlated and identically distributed normal random

variables with zero mean and unknown constant vari-

ance, and nd is the number of observations.

For the calibration process, we consider that response

and predictor variables correspond to instrumental sig-

nificant wave heights (buoy and satellite, Hs
I) and re-

analysis significant wave heights (Hs
R), respectively. The

nonlinear function f is equal to

f (x; b)5 f (aR, bR; HR
s , u)5 aR(u)(HR

s )b
R(u)

5HC
s , (3)

where HR
s is the reanalysis significant wave height, HC

s is

the calibrated or corrected significant wave height, and

aR(u) and bR(u) are the parameters dependent on the

wave direction u. Note that although we particularize

equations for significant wave height variables, the method

is also valid for other reanalysis variables such as wind

velocity or mean wave periods.

The model relies on the assumption that parameters

aR and bR vary smoothly with the propagation direc-

tion (u). These variations are introduced in the model

throughout cubic splines, so that only a given number np
of values of the parameters at different given directions

aj, bj; j 5 1, . . . , np are known (see the circle points in

Fig. 1a). The parameter values for all possible directions

are obtained interpolating through smoothing cubic-

spline functions as follows:

aRi (ui)5 aj 1 xaj (ui 2 uj) 1 yaj (ui 2 uj)
2
1 zaj (ui 2 uj)

3,

(4)

bRi (ui)5 bj 1 xbj (ui 2 uj)1 ybj (ui 2 uj)
2
1 zbj (ui 2 uj)

3,

(5)

where aRi and bRj are the interpolated model correction

parameters for a given direction ui, aj, bj; j 5 1, . . . , np
are the parameters to be estimated (i.e., the parameter

values associated with directions uj); j 5 1, . . . , nd, and

xaj , yaj , zaj , xbj , ybj , zbj ; j 5 1, . . . ,nd are the corresponding

cubic-spline parameters, which are obtained using zero-,

first-, and second-order continuity conditions along the

circumference (0 # u# 2p). Note in Fig. 1 that distances

hj between direction locations do not need to be equally

spaced. Additionally, from the practical point of view

u1 5 0 and unp11 5 2p, which corresponds with the same

direction (angle) value, and for this reason, the following

conditions must be fulfilled:

a1 5 anp11

b1 5 bnp11,
(6)

this is the reason why only np parameters have to be

considered for the spline definition.

Under these considerations and using Eq. (2) the spline

parameters aj, bj; j 5 1, . . . , np estimation consist of de-

termining the optimal values by solving the following

optimization problem:

Minimize
a,b �

n
d

i51
(HI

s
i
2HC

s
i
)2
5�

n
d

i51
[HI

s
i
2 aRi (ui)(HR

s
i
)b

R
i (u

i
)]2

(7)

subject to

aRi 5 aj 1 xaj (ui 2 uj)1 yaj (ui 2 uj)
2
1 zaj (ui 2 uj)

3

bRi 5 bj 1 xbj (ui 2 uj)1 ybj (ui 2 uj)
2
1 zbj (ui 2 uj)

3

)

i5 1, . . . , nd,

(8)
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aj . 0; j 5 1, . . . , np, (9)

g(a, b)5 0, (10)

where nd is the number of data pairs (HI
s ,HR

s ) available

for parameter estimation. Note also that each data pair

uses a different cubic polynomial depending on the di-

rection values according to the following condition uj #

ui , uj11. This does not represent a problem from the

practical point of view because both the values uj; j 5

1, . . . , np and ui; i5 1, . . . , nd are data for the estimation

procedure. The constraint in (9) ensures the positiveness

of parameter a, since significant wave height must re-

main positive. The constraint in (10) represents all re-

quired equations for the definition of the cubic-spline

parameters xaj , y
a
j , z

a
j , x

b
j , y

b
j , z

b
j ; j5 1, . . . ,np. A detailed

definition of these equations is given in the appendix.

Observe that, from a mathematical point of view, the

problem defined in Eqs. (7)–(10) consists of the mini-

mization of a positive sum of continuously derivable

convex functions defined on a compact set (i.e., a convex

function with linear constraints). Hence, there exists one

and only one solution provided that constraints are

feasible, which it is the case for the cubic-spline defini-

tion. The minimization problem can be solved using any

of the available solvers for nonlinear programming sub-

ject to linear constraints, such as MINOS (Murtagh

and Saunders 1998) under General Algebraic Modeling

System (GAMS; Brooke et al. 1998), which also allows

including bounds on parameters to be estimated. The

method uses a reduced-gradient algorithm (Wolfe 1963)

combined with the quasi-Newton algorithm described in

Murtagh and Saunders (1978) where the gradient vector

information is obtained using numerical differentiation.

Alternatively, the optimization procedure can be solved

using the sequential quadratic programming (SQP) method,

where the estimate of the Hessian of the Lagrangian at

each iteration is computed using the Broyden–Fletcher–

Goldfarb–Shanno (BFGS) formula (see Powell 1978).

In the previous section the nonlinear model proposed

for parameter estimation of the calibration method was

presented. However, the calibration procedure as a whole

(i.e., the obtention of the final calibrated time series in

a particular location) involves several additional steps:

1) Data and quantile selection: The calibration proce-

dure is intended to correct the probability distribu-

tion function of the reanalysis variable in order to be

as close as possible to the instrumental variable prob-

ability distribution. For this task, it is required to use

both reanalysis and instrumental data coincident in

time and space, and for the selection of the appro-

priate quantiles to be compared.

2) Smooth quantile calculation: Since the calibration

procedure assumes a smooth variation of the cali-

bration parameters, the selected quantiles for differ-

ent directions must be calculated.

3) Parameter estimation: Using the reanalysis and in-

strumental quantiles, the parameters are estimated

solving the problems in (7)–(10).

4) Diagnostic analysis: Confidence intervals of the pa-

rameters to measure the quality of the calibration

procedure are estimated using classic regression

techniques.

FIG. 1. Smooth variations of parameters aR(u) and bR(u) depending on the wave direction: (a) polar plot, (b) spline for

parameter aR(u), and (c) spline for parameter bR(u).
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5) Time series calibration: Once the optimal calibration

parameters are available, it is possible to correct the

reanalysis time series related to a given location.

6) Diagnostic time series analysis calibration: Using also

standard regression techniques, confidence intervals

for the calibrated times series are calculated. This

diagnostic allows quantifying the uncertainty associ-

ated with the calibration procedure. Several diag-

nostic plots are also listed.

All the aforementioned steps are explained in detail in

the following subsections.

a. Data and quantile selection

The target of the calibration procedure is to correct

the significant wave height reanalysis time series record

at a particular location (see the objective point in Fig. 2)

using instrumental data. For this purpose, the first step

of the method is to select nd data pairs (HI
s ,HR

s ) in an

area close to the objective point where the wave climate

is similar. The definition of an automatic criterion to

select the data to be incorporated for the posterior pa-

rameter estimation procedure is difficult; however, we

propose a procedure based on vector correlation (Crosby

et al. 2003), sensitivity tests (Tomás 2009), and designer

criterion. The guidelines for data selection are summa-

rized as follows:

1) Select a circular area around the objective point of

radius r (neighborhood criterion). The length of the

radius depends on the ocean climate homogeneity

and the number of available data. There must be

a compromise between the data record length and its

homogeneity, since the longer the radius the higher

the length of the record, but it is more likely to use

data with different wave climate. In our experience and

after several sensitivity tests using different parameter

configurations around the Spanish coast, we derived

the following rule of thumb: (i) r 5 0.58 for complex

areas such as Mediterranean Sea; (ii) r 5 18 for

Atlantic Ocean coastlines, and (iii) r 5 28 for open

areas.

2) The homogeneity criterion is further supported using

the concept of vector correlation (Crosby et al. 2003),

which is a generalization of the standard scalar corre-

lation coefficient including both directional and mag-

nitude information. Vector correlation is equal to

zero when the vectors are independent and obtains

its maximum value (i.e., 2 for the two-dimensional

case) if and only if they are linearly dependent. Thus,

from different tests performed, data within the neigh-

borhood criterion circle whose vector correlation is

higher than 1.5 are taken for calibration purposes;

otherwise, they are removed.

3) In shallow-water areas and depending on the spatial

resolution of wave reanalysis, it might be necessary

to consider data pairs with relative water depth h/L

similar to or larger than that at the objective location,

where h and L are water depth and wavelength,

respectively. This aspect is very important in order to

avoid possible bias in the direction of the wave

reanalysis, which may not be adequately reproduced

by the wave propagation model if the spatial resolu-

tion is coarse (i.e., more than 25 km). Nevertheless,

the proposed procedure is robust with respect to di-

rectional calibration bias, as shown in section 4.

4) When the orography is complex and dealing with

significant wave height, as the case shown in Fig. 2b,

in order to avoid using diffracted or sheltered wave

data whose wave climate may be very different from

the one in the objective location, a ray criterion is

FIG. 2. Data selection for the calibration procedure showing reanalysis nodes, satellite data locations, and buoys.
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used (i.e., only data within the circle so that, if the

line joining its location with the objective point does

not intercept land, is taken into consideration, as

shown in Fig. 2b). Note that diffracted data may pres-

ent a high vector correlation if directions and mag-

nitudes are affected by a constant, but we do not

consider them.

5) Once the locations of the data to be considered are

defined and for comparisons to be meaningful, both

reanalysis and instrumental data pairs coincident in

location and time must be obtained. This process is

performed interpolating spatially and temporally the

reanalysis data. The final result is a set of nd data

pairs (Hs
I, Hs

R), which are used afterward for quantile

calculations.

Note that the selection criteria are based on previous

results, heuristic guidelines from sensitivity tests, and

under certain assumptions. Computational performance

tests have shown that the methodology provides satis-

factory results for the locations studied (Mediterranean

Sea and Atlantic Ocean). Nevertheless, further research

must be done about the data selection criteria consid-

ering that these data should have homogeneous cali-

bration parameters for other locations around the world.

The selected nd pairs (HI
s ,HR

s ) would allow us to get

calibration parameter estimates solving the problem in

(7)–(10). However, since most of the data are in the

medium and lower parts of the distribution, this would

produce a masking effect for the highest significant wave

heights, which would not receive the appropriate cor-

rection. To avoid this shortcoming a quantile calibration

is proposed, instead of using nd data pairs, quantiles

associated with a given number nq of probabilities on

a Gumbel scale are chosen as follows:

qlo 52log[2log(1/nd)], (11)

qup 52log[2log(12 5/nd)], (12)

xq
i
5 qlo 1 (i2 1)

qup 2 qlo

nq
; i5 1, . . . ,nq, (13)

qi 5 exp[2exp(2xq
i
)]; i5 1, . . . ,nq, (14)

where qlo and qup are the Gumbel scale values associ-

ated with the lower (1/nd) and higher (1 2 5/nd) prob-

abilities, respectively; x
qi

; i5 1, . . . ,n
q

are equally space

values on the Gumbel scale; and qi; i5 1, . . . , nq are the

corresponding quantile probabilities. For instance, if

nd 5 1000 and nq 5 5, then the quantiles result in q 5

f0.0010, 0.3218, 0.8302, 0.9699, 0.9950g, where three of

them belong to the higher tail of the distribution.

b. Smooth quantile calculation

In the previous step, a set of nd data pairs (HI
s ,HR

s )

and different quantile probabilities q where determined.

The next step encompasses the evaluation of the se-

lected quantiles associated with the probabilities q from

the HI
s and HR

s empirical distribution functions, respec-

tively, so that the calibration parameter estimation is per-

formed using quantile pairs (qIH
s
, qRH

s
) instead of data pairs.

Since the proposed calibration technique introduces

smooth variations depending on wave direction, the quan-

tile calculation requires us to somehow embed the wave

direction information u. The process works as follows:

1) First of all a sector with amplitude Du must be

defined. For practical cases we use Du5p/85 22:58,

this sector would be a moving sector that will rotate

all around the circumference 18 at a time, as shown in

Fig. 3a. At every position of this sector defined by its

mean direction ui, all data whose direction is within

this sector (i.e., "kjui 2 Du/2 # uk # ui 1 Du/2) are

chosen as sector data. The selection of Du 5 22.58 is

based on numerical tests; this value provides an

smoothing effect which minimizes possible directional

bias. Note that defining these corrections based on

mean direction ui may be a problem for those cases

where there are multiple swell and sea components,

and although the mean direction is an appropriate

representative of the most energetic waves, further

research should be done on this particular issue.

2) For each sector i 5 1, . . . , 360, the nq quantiles

(qIHs ,i
, qRHs ,i

) are obtained using the empirical distri-

bution function of the sector data as shown in Fig. 3b.

For this task, those quantiles are computed as follows:

(i) The sorted values in HI
s,i are taken as the

(0:5/nIi , 1:5/nIi , . . . , (nIi 2 0:5)/nIi ) quantiles, where

nIi corresponds to the number of instrumental

data within sector i.

(ii) Quantiles associated with probabilities between

(0:5/nIi ) and [(nIi 2 0:5)/nIi ] are computed using

linear interpolation.

(iii) The minimum or maximum values in HI
s,i are

assigned to quantiles for probabilities outside

that range.

The process is analogous for quantiles related to

HR
s,i.

Note that at the end of the process there are ndq 5

360 3 nq quantile pairs that can be used for parameter

estimation.

There are several computational issues that are im-

portant from the practical point of view:

1) For each sector, there is a minimum number of points

in order to calculate empirical quantiles [e.g., the
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minimum between 5 times the number of quantiles

(5nq) and 10% of the number of data pairs (0.1nd)]. If

the number of points within any sector is lower than

this quantity, no quantiles are calculated.

2) Once the procedure concludes there could exist sec-

tors where no quantiles are available. This may cause

computational convergence problems on the parame-

ter estimation procedure. For this reason, auxiliary

quantiles are synthetically generated using linear in-

terpolation between quantiles from adjacent sectors.

Note that this result does not affect the calibration

procedure because no data or very low number of

points have wave directions within those empty sectors.

3) The proposed method relies on wave reanalysis–

derived directional data. It is already known that in

nearshore areas, directional bias between reanalysis

and directional buoy data is commonly about 108

and can be as much as 408 (e.g., Hemer et al. 2010).

However, we overlook these biases completely for

several reasons:

(i) In some cases, instrumental data do not contain

directional information.

(ii) The selection of the window Du attenuates pos-

sible biases on directional information providing

a smoothing effect. Numerical tests have dem-

onstrated that the selection Du5p/85 22:58

minimizes the directional biases’ influence.

For the cases where reanalysis and instrumental direc-

tional information is available, it is more efficient to

calibrate this information, and use calibrated directional

information within the proposed methodology. Including

the directional uncertainty in the proposed model is

a subject for further research.

c. Parameter estimation

Using the ndq quantile pairs related to reanalysis and

instrumental data (qIH
s
,qRH

s
), the solution of the problem

in (7)–(10) provides the optimal estimation parameters

â, b̂ of both spline functions.

The minimization of the least squares objective func-

tion can be done using nonlinear optimization routines.

Nevertheless, from previous experiences, the following

comments and recommendations are pertinent:

1) Although the parameter estimation problem is an

unconstrained minimization problem with respect

the parameter estimation variables, we would rather

use a constrained optimization solver to including

parameter bounds, which makes the estimation more

robust. These bounds help avoiding parameters a tak-

ing negative values (i.e., aj . 0; j 5 1, . . . , np), which

corresponds to physically infeasible corrections on the

calibration procedure.

2) All Newton-type routines require the user to supply

starting values, but the importance of good starting

values can be overemphasized. Thus, for the first

iteration, initial guesses are taken as

aj 5 1; bj 5 1; j5 1, . . . ,np, (15)

which corresponds to no correction for reanalysis data

in the calibration process.

FIG. 3. Data selection for the calibration procedure: (a) moving sector for smooth quantile evaluation and

(b) empirical distribution function for a given sector i.
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d. Diagnostic analysis

The solution of the problem in (7)–(10) provides the

mean values of the estimated parameters b̂, and as-

suming that observational errors are normally distrib-

uted, the estimated parameter vector is distributed as

follows:

b; N(b̂, Sb), (16)

where N denotes the multivariate normal distribution,

and Sb is the variance-covariance matrix of the param-

eter estimates.

One advantage of using least squares method for pa-

rameter estimation is that the solution corresponds to

the maximum likelihood estimate. Note that the log-

likelihood function for the « independent and normally

distributed errors is

‘(b,s2)52
ndp

2
log(2ps2) 2

1

2s2
�
n

dp

i51
[yi2 f(xi; b)]2

2
4

3
5.

(17)

Once the parameters of the regression model are es-

timated it is also of interest the error mean square or

residual variance ŝ2, whose unbiased estimator is

ŝ2 5

�
n

dp

i51
[yi2 f (xi; b)]2

ndp 2 np 2 1
. (18)

Using the method of maximum likelihood, if ‘(b, s2)

is twice differentiable with respect to estimated param-

eters and under certain regularity conditions, which are

often satisfied in practice (Lehmann and Casella 1998).

The parameters covariance matrix is equal to the inverse

of the Fisher information matrix (Ib), which is equal to

the Hessian matrix of the log-likelihood function with

the sign changed:

Ib 52
›2‘(b,s2)

›2b
. (19)

Considering (2) and (17) the Fisher information ma-

trix in (19) can be rewritten as

Ib 5
1

2ŝ2

›2(eTe)

›2b
5

Hb

2ŝ2
, (20)

where Hb is the Hessian of the least squares objective

function, which can be obtained numerically by finite

differences or, depending on the optimization algorithm

used, can be a subproduct of the optimization procedure.

The corresponding inverse is the variance-covariance

matrix:

Sb 5 I21
b . (21)

The (1 2 a) confidence interval for each parameter is

equal to

b
up
j 5 b̂j1 t

(12a/2,n
dp
2np21)

ŝj, j5 0, 1, . . . , np

blo
j 5 b̂j 2 t

(12a/2,n
dp
2np21)

ŝj, j5 0, 1, . . . ,np, (22)

where t
(12a/2,ndp2

np21)
is the Student’s t distribution (1 2

a/2) quantile with ndp 2 np 2 1 degrees of freedom and

ŝj is the estimated standard deviation for parameter j

(square root of the corresponding diagonal term in Sb).

e. Time series calibration

Once the optimal calibration parameters â and b̂ are

available, it is possible to correct the reanalysis time series

related to a given location given the pairs (u
i
,HR

si
);"i.

The process has two steps:

1) Obtain the corresponding spline interpolated values

aR and bR using the wave direction information u and

the estimated spline parameters â and b̂.

2) The application of the correction in (3) for each data:

HC
s
i
5 aRi (ui)(HR

s
i
)b

R
i (u

i
); "i, (23)

where HC
si

; "i is the calibrated data.

FIG. 4. Selected locations for the calibration study: buoy and

satellite data.
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Note that this step is also affected by the effect of

directional bias. However, it has been numerically tested

that the relative sensitivity of the calibrated data HC
si

with respect to ui is considerably lower than w.r.t. HR
si

.

This justifies the good performance of the proposed

method. The inclusion of this bias could enhance results

and is a subject for further research.

f. Diagnostic time series analysis calibration

Analogously to the parameter estimation process, and

considering that spline calibration parameters b5 (a; b)T

follow a multinormal distribution with parameters b̂ and

Sb. Then for a large sample size ndp, the corrected sig-

nificant wave height HC
si

is asymptotically normal, that is,

FIG. 5. Diagram showing the long-term distribution of wave height and direction for (left) Cabo de Gata and (right) Estaca de Bares: buoy

and satellite data.

FIG. 6. Validation of the WRDB using the deep water buoy Cabo de Gata for the year 2000.
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HC
s
i
;N(Ĥ

C

s
i
,$T

bH
C
s
i
Sb$bH

C
s
i
); i5 1, . . . ,nd, (24)

where $bH
C
si

is the n vector of partial derivatives of HC
si

with respect to b, which is given by

$bH
C
s
i
5

›HC
s
i

›a1

. . .
›HC

s
i

›an

›HC
s
i

›b1

. . .
›HC

s
i

›bn

" #T

. (25)

Note that Eq. (24) allows obtaining the variance s2
HC

si
of the corrected significant wave height due to the re-

gression model. If the uncertainty not explained by the

regression model wants to be included, the corrected

significant wave height intervals are

HC
s
i
6 t

(12a/2,n2p21)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2 1 s2

HC
si

r
; i5 1, . . . ,nd. (26)

Besides confidence intervals, it is also interesting the

use of different diagnostic statistics for comparing the

similarity on the distributions of both reanalysis and

calibrated data (y) with respect to instrumental data (x),

which is taken as a benchmark:

d The systematic deviation between two random vari-

ables (BIAS):

BIAS5 x 2 y. (27)

d The root-mean-square error (RMS):

FIG. 7. Selected quantiles for parameter estimation: (a) Cabo de Gata and (b) Estaca de Bares. (top) Reanalysis

and (bottom) instrumental.
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RMS5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nd
�
n
d

i51
(xi 2 yi)

2

vuut
. (28)

d Residual scatter index (RSI), which measures disper-

sion with respect the line x 5 y:

RSI5
RMS

x
. (29)

d The Pearson’s correlation coefficient (r).
d Sample distribution moments: Mean (m), standard

deviation (s), skewness (g), and kurtosis (j).

Note that for the first three statistics the lower the

value is, the better the agreement between instru-

mental and reanalysis or calibrated data. However, it

is the opposite for the Pearson’s correlation coefficient.

These statistics are used to measure the quality of the

TABLE 1. Optimal estimated parameters for both locations and the 95% confidence intervals.

Cabo de Gata Estaca de Bares

u(8) j aj alo
j a

up
j bj blo

j b
up
j aj alo

j a
up
j bj blo

j b
up
j

0 1 1.756 1.736 1.776 0.864 0.844 0.884 1.016 1.001 1.032 1.008 0.998 1.019

22.5 2 1.734 1.713 1.756 0.847 0.827 0.867 0.809 0.791 0.827 1.214 1.197 1.230

45 3 1.413 1.396 1.431 0.741 0.728 0.754 0.943 0.925 0.962 1.068 1.053 1.084

67.5 4 1.312 1.293 1.330 0.824 0.812 0.835 1.019 1.001 1.038 0.929 0.915 0.943

90 5 1.294 1.276 1.312 0.840 0.824 0.855 0.805 0.786 0.823 1.178 1.157 1.200

112.5 6 2.304 2.253 2.355 1.047 1.016 1.078 0.748 0.727 0.769 1.199 1.175 1.222

135 7 2.811 2.728 2.894 1.467 1.416 1.518 0.738 0.718 0.759 1.166 1.144 1.189

157.5 8 2.213 2.154 2.271 1.220 1.175 1.265 0.720 0.701 0.739 1.153 1.133 1.173

180 9 1.990 1.945 2.036 1.162 1.118 1.206 0.702 0.684 0.720 1.137 1.119 1.156

202.5 10 1.854 1.819 1.889 1.173 1.132 1.213 0.693 0.674 0.712 1.129 1.109 1.148

225 11 1.852 1.834 1.871 1.048 1.029 1.067 0.665 0.646 0.683 1.123 1.105 1.141

247.5 12 1.895 1.876 1.913 0.856 0.844 0.869 0.787 0.773 0.800 1.075 1.065 1.085

270 13 1.951 1.934 1.968 0.893 0.879 0.906 0.950 0.934 0.967 0.974 0.965 0.982

292.5 14 1.930 1.912 1.948 0.946 0.928 0.965 1.039 1.023 1.054 0.950 0.943 0.958

315 15 1.880 1.862 1.898 0.907 0.888 0.925 1.018 1.003 1.033 0.964 0.957 0.971

337.5 16 1.840 1.821 1.859 0.899 0.880 0.918 1.064 1.047 1.080 0.930 0.922 0.939

360 17 1.756 1.736 1.776 0.864 0.844 0.884 1.016 1.001 1.032 1.008 0.998 1.019

FIG. 8. Spline correction parameters (solid lines) and 95% confidence intervals (dashed lines) for (left) Cabo de Gata

and (right) Estaca de Bares.
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calibration process comparing the statistics obtained us-

ing instrumental-reanalysis versus instrumental-calibrated

data.

There are also diagnostic plots such as quantile scat-

terplots, data scatterplots, empirical distribution func-

tion plots for instrumental, reanalysis, and calibrated

data, which can be used to have a qualitative idea of the

goodness of the calibration process.

3. Case study

In this work, we use the reanalysis database SIMAR-

44 generated by Puertos del Estado. For this purpose

they used the 44-yr (1958–2001) dynamic downscal-

ing regional-scale climate model (REMO; Jacob et al.

(2001)) from the global atmospheric reanalysis car-

ried out by the National Centers for Environmental

Prediction–National Center for Atmospheric Research

(NCEP–NCAR) and the wave model WAM (WAMDI

Group (1988)). This SIMAR-44 reanalysis consists on

hourly time series over a 44-yr period (1958–2001) of

significant wave height (Hs), mean period (T), and mean

direction (u) over different regular grids around Spain.

We have selected two different locations to apply the

calibration methodology: (i) Cabo de Gata, and (ii)

Estaca de Bares, as shown in Fig. 4. We have selected

FIG. 9. Empirical long-term distribution of selected quantiles: (i) instrumental, (ii) reanalysis, and (iii) calibrated:

(left) Cabo de Gata and (right) Estaca de Bares.

FIG. 10. Diagram showing the quantile–quantile diagnostic plots for (a) Cabo de Gata and (b) Estaca de Bares,

comparing reanalysis and calibrated data vs instrumental data.
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reanalysis nodes on these locations because there are

available instrumental data consisting of buoy records

from Puertos del Estado network and altimeter informa-

tion from five different satellite missions: TOPEX, TOPEX

2, Jason, Envisat, and the GFO. These data are given over

different time frames.

Wave climate at the Cabo de Gata location has two pre-

dominant wave directions, east–east-northeast (E–ENE)

and west–west-southwest (W–WSW) corresponding to

waves coming from the Mediterranean Sea (levantes)

and Atlantic Ocean (ponientes), respectively, as shown

in Fig. 5a. Note that in this location the effect of wave

directionality is very important. Wave climate at the

Estaca de Bares location is more homogeneous in di-

rection (see Fig. 5b), where swell waves from the

northwest are predominant. In Fig. 6 a comparison is

shown between the significant wave height (SWH) at the

Cabo the Gata buoy and the reanalysis for year 2000.

Note that the agreement is satisfactory reinforcing the

hypothesis of using WRDB to define wave climate at any

specific location at the coast, however there are still dis-

crepancies that may be important for design purposes.

We have applied the calibration methodology for both

locations following the steps in section 2:

1) Data and quantile selection: We take as data both

buoy and satellite records around the specific loca-

tions in a ratio of 18 for Estaca de Bares and 0.58 for

Cabo de Gata, as shown in Fig. 4. Note that all data

within those circles have a vector correlation higher

than 1.5.

2) Smooth quantile calculation: The number of quan-

tiles and sector width is nq5 20 and Du5p/85 22:58,

respectively. In Fig. 7, the selected quantiles for

different directions are shown. Each quantile is plot-

ted on a different grayscale color to facilitate quantile

recognition all over the circumference. Note that the

upper graphs correspond to reanalysis quantiles, and

the lower graphs are the corresponding instrumental

(buoy and satellite) quantiles. These will be used in

the parameter estimation procedure. In both cases

there are directions where no data exist, for this rea-

son, there are synthetically generated smooth quan-

tiles using linear interpolation.

3) Parameter estimation: Using the reanalysis and in-

strumental quantiles, the parameters are estimated

solving the problem in (7)–(10). The optimal values

are provided in Table 1. Their evolution is also shown

in Fig. 8. Note from these results that reanalysis for

the Estaca de Bares location, where wave climate is

the response to the wind fields in the entire northeast

Atlantic, provides satisfactory results, being the cali-

bration parameters on the main directions very close

to 1. This corresponds to no correction. However, the

reanalysis of Cabo de Gata is deficient because of

the low wind spatial resolution on the Mediterra-

nean Sea.

FIG. 11. Time series evolution of the instrumental, reanalysis, and calibrated data, including the

95% confidence intervals (gray shadow) for Cabo de Gata.

TABLE 2. Comparison of the sample distribution moment errors

between directional calibrated and nondirectional calibrated data

with respect to instrumental data, respectively, at both locations.

Cabo de Gata Estaca de Bares

Directional Nondirectional Directional Nondirectional

� (m) 0.057 86 0.195 910 0.000 58 20.056 081

� (s) 20.078 80 20.135 119 20.024 22 20.021 503

� (g) 20.001 30 20.025 939 0.095 71 0.148 193

� (j) 0.139 04 0.284 560 0.109 94 0.166 611
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4) Diagnostic analysis: Confidence intervals of the pa-

rameters are estimated using classic regression tech-

niques, which are provided in Table 1 and shown in

Fig. 8. In Fig. 9 the cumulative distribution function of

instrumental, reanalysis, and calibrated quantiles is

shown. Note that the calibrated quantile probability

distribution presents good agreement with instrumental

data, better than reanalysis. The effect is clearer in

Cabo de Gata because of the directionality effect.

5) Time series calibration: Once the optimal calibration

parameters are available, it is possible to correct

the reanalysis time series related to a given location

(i.e., using all data pairs). In Fig. 10 the quantile–

quantile plots instrumental versus reanalysis and

calibrated data are shown. Note that the calibrated

data shows very good diagnostics with points close

to the diagonal. It is worth mentioning how the

different calibration procedure works for Cabo the

Gata location, where quantiles proceeding from

E–ENE and W–WSW need a completely different

correction, which is achieved using the proposed

methodology. Note the calibrated time series pres-

ents better agreement with instrumental data, which

is in most cases within the 95% confidence bands

(see Fig. 11).

Note that in order to gauge the added benefit of

the directional correction approach, Fig. 10 shows

the quantile–quantile plot (green dots) associated

with a nondirectional simple regression model of

the form f (x;b)5 f (aR, bR;HR
s )5 aR(HR

s )b
R

5HC
s ,

where aR and bR are the corresponding regression

parameters. In both locations the model including

directional information provides results that are

closer to instrumental data. This effect is stronger

for Cabo de Gata, where there are two clear differ-

ent wave families (‘‘levantes’’ and ‘‘ponientes’’) which

require a different correction. Table 2 provides the

relative errors of directional calibrated and nondirec-

tional calibrated data with respect to instrumental

data, respectively. Note that errors related to the

directional approach are comparatively lower for all

sample moments. These results demonstrate the im-

provement achieved including directional information.

6) Diagnostic time series analysis calibration: Also us-

ing standard regression techniques confidence in-

tervals for the calibrated times series are calculated.

This diagnostic allows quantifying the uncertainty

associated with the calibration procedure. In Fig. 11

the time series evolution of instrumental, reanalysis,

and calibrated data is shown. Note that the calibrated

time series is closer to the instrumental data improving

wave climate characterization.

Finally, in Tables 3 and 4 the different diagnostic

statistics and the sample distribution moments: mean

(m), standard deviation (s), skewness (g), and kurtosis

(j) for reanalysis, calibrated, and instrumental data are

given, respectively. Note that the relative errors with

respect to instrumental data for the calibrated time se-

ries are considerably lower than those for the reanalysis

case. This occurs for all sample moments, which shows

the good performance of the proposed procedure. In

addition, all statistics related to calibrated data present

better diagnostics.

4. Analysis of directional uncertainty

To further investigate the influence of directional bias,

we have performed additional tests using the instrumen-

tal directional information from both locations. Note that

TABLE 3. Comparison of the diagnostic statistics between reanalysis

instrumental and calibrated instrumental for both locations.

Cabo de Gata Estaca de Bares

HR
s 2HI

s HC
s 2HI

s HR
s 2HI

s HC
s 2HI

s

BIAS 0.3383 20.0587 20.0885 20.0014

r 0.7165 0.7941 0.9157 0.9157

RSI 0.5835 0.4295 0.2381 0.2215

RMS 0.5922 0.4359 0.5860 0.5452

TABLE 4. Sample distribution moments (mean, standard deviation, skewness, and kurtosis) and comparison between reanalysis

instrumental and calibrated instrumental for both locations.

Cabo de Gata Estaca de Bares

HR
s HC

s HI
s HR

s HC
s HI

s

Mean (m) 0.676 76 1.073 76 1.015 03 2.5502 2.463 14 2.461 70

Std dev (s) 0.469 48 0.640 82 0.695 64 1.436 63 1.330 66 1.363 70

Skewness (g) 2.384 13 1.517 97 1.519 95 1.735 80 1.683 76 1.536 68

Kurtosis (j) 14.697 45 6.864 62 6.026 67 7.005 61 6.799 72 6.126 178

� (m) 20.333 25 0.057 86 — 0.035 95 0.000 58 —

� (s) 20.325 11 20.078 80 — 0.053 49 20.024 22 —

� (g) 0.568 55 20.001 30 — 0.129 57 0.095 71 —

� (j) 1.438 73 0.139 04 — 0.143 55 0.109 94 —

� Relative error w.r.t. instrumental data
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the calibration results shown previously in the paper con-

tain both buoy and satellite information, we have 10 404

and 12 938 data pairs for Cabo de Gata and Estaca de

Bares, respectively. From those data pairs, 8555 and 11 737,

respectively, correspond to buoy data where instrumental

directional information is available. Using these two new

sets, we performed the following tests:

1) For both locations, we perform the calibration procedure

using both reanalysis and instrumental directional

information, and compare the different diagnostic

statistics and sample distribution moments.

2) To obtain statistically sound conclusions, and be-

cause of the linear relationship between reanalysis

and instrumental directional information at Estaca

de Bares location, we perform a simulation test with

1000 samples where directional information were

simulated from the regression equation between

reanalysis and instrumental directional data.

In Table 5 the sample distribution moments: mean

(m), standard deviation (s), skewness (g), and kurtosis

(j) for reanalysis, calibrated, and instrumental data

considering both reanalysis (uR) and instrumental (uI)

directional information are given. Note that the relative

errors with respect to instrumental data for the calibrated

time series are considerably lower than those for the re-

analysis case. This occurs for all sample moments and

using both reanalysis and instrumental directional in-

formation, which shows the good performance of the

proposed procedure and its robustness with respect to

possible biases in directional reanalysis data. This con-

clusion is further reinforced by the results shown in

Table 6, where different diagnostic statistics are pro-

vided. Note that calibrated diagnostics using both di-

rectional data presents better results with respect to

reanalysis data without any correction. However, no clear

conclusion can be withdrawn about whether it is better to

use reanalysis or instrumental directional data.

In an attempt to obtain statistically sound conclusions,

we perform a simulation experiment consisting of the

calibration at Estaca de Bares location using simulated

directional data. A linear regression model between

instrumental and reanalysis directional data is fitted,

where original pairs (uR, uI) are transformed to (ûR, ûI) to

TABLE 5. Sample distribution moments (mean, standard deviation, skewness, and kurtosis) and comparison between reanalysis

instrumental and calibrated instrumental for both locations using instrumental and reanalysis directional information.

Cabo de Gata Estaca de Bares

HR
s HC

s HI
s HR

s HC
s HI

s

Reanalysis uR Mean (m) 0.6476 1.0388 0.9715 2.5244 2.4438 2.4381

Std dev (s) 0.4303 0.6176 0.6663 1.3996 1.2975 1.3327

Skewness (g) 1.8488 1.3536 1.4750 1.5625 1.5363 1.4058

Kurtosis (j) 9.5881 5.9380 5.6953 5.9127 5.8262 5.3145

� (m) 20.3334 0.0693 — 0.0354 0.0024 —

� (s) 20.3543 20.0730 — 0.0502 20.0264 —

� (g) 0.2534 20.0823 — 0.1114 0.0928 —

� (j) 0.6835 0.0426 — 0.1126 0.0963 —

Instrumental uI Mean (m) 0.6476 1.0412 0.9715 2.5244 2.4568 2.4381

Std dev (s) 0.4303 0.6180 0.6663 1.3996 1.2922 1.3327

Skewness (g) 1.8488 1.5395 1.4750 1.5625 1.5245 1.4058

Kurtosis (j) 9.5881 6.7512 5.6953 5.9127 5.7381 5.3145

� (m) 20.3334 0.0717 — 0.0354 0.0077 —

� (s) 20.3543 20.0726 — 0.0502 20.0304 —

� (g) 0.2534 0.0437 — 0.1114 0.0844 —

� (j) 0.6835 0.1854 — 0.1126 0.0797 —

� Relative error w.r.t. instrumental data

TABLE 6. Comparison of the diagnostic statistics between reanalysis instrumental and calibrated instrumental for both locations using

instrumental and reanalysis directional information.

Cabo de Gata Estaca de Bares

HR
s 2HI

s HC
s 2HI

s (uR) HC
s 2HI

s (uI) HR
s 2HI

s HC
s 2HI

s (uR) HC
s 2HI

s (uI)

BIAS 0.3239 20.0673 20.0697 20.0863 20.0057 20.0187

r 0.7070 0.7871 0.7856 0.9145 0.9167 0.9182

RSI 0.5900 0.4393 0.4412 0.2359 0.2206 0.2184

RMS 0.5732 0.4267 0.4286 0.5752 0.5379 0.5326
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fit a unique model ûI 5 p1û
R 1 p2 1 �. Parameter estimates

and 95% confidence intervals p1 5 0.9433(0.9331, 0.9535)

and p2 5 25.828(22.588, 29.068) are obtained using least

squares method. The residuals standard deviation is

s 5 24.438. This model is used to generate 1000 ran-

dom samples of ‘‘calibrated’’ reanalysis directional

information, which are used within the calibration

process.

In Fig. 12 the sample distribution moments: (Fig. 12a)

mean (m), (Fig. 12b) standard deviation (s), (Fig. 12c)

skewness (g), and (Fig. 12d) kurtosis (j) obtained during

the simulation process are shown. The histogram rep-

resents the statistical distribution of each calibration

sample, the light gray line corresponds to the normal fit,

and the different dots represent the statistics for the

following: (i) the calibration using reanalysis directional

data (black circle dot), (ii) the calibration using instrumental

directional data (square black dot), (iii) reanalysis data

without calibration (asterisk black dot), (iv) instru-

mental data (diamond black dot), and finally (v) the

mean value from simulated samples (circle light gray

dot). In addition, the mean and standard deviation from

simulated samples for each sample moment are shown,

also including the probability of obtaining a simulated

sample moment worse than the reanalysis data with

respect to the instrumental data. Note that in all simu-

lated cases the moments obtained from calibrated data

are closer to instrumental moments than reanalysis data,

and the probabilities of obtaining worst results with re-

spect to reanalysis data is almost negligible. This proves

FIG. 12. Sample distribution moments: (a) mean (m), (b) standard deviation (s), (c) skewness (g), and (d) kurtosis (j) from

the simulation process.
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the robustness of the calibration procedure with respect

to uncertainty in the directional information.

Analogous results than those in Fig. 12 are given in

Fig. 13 for the (Fig. 13a) bias, (Fig. 13b) Pearson’s cor-

relation coefficient (r), (Fig. 13c) RSI, and (Fig. 13d)

RMS. Note that for all statistics, except for Pearson’s

correlation coefficient, results are always better with re-

spect to reanalysis data, confirming the robustness of the

proposed procedure. However, there is a 14.11% proba-

bility that calibration provides the worst results in Pear-

son’s correlation coefficient with respect to reanalysis.

Finally, in Fig. 14 the empirical long-term distribution

function of (i) calibrated data using reanalysis directional

data (dashed line), (ii) calibrated data using instrumental

directional data (dash–dot line), (iii) reanalysis data with-

out calibration (dark gray line), (iv) instrumental data

(black line), and finally (v) calibrated data from simu-

lated samples (light gray lines) are shown. They are

plotted in Gumbel scale. These representations allow us

to better check the behavior in the right tail of the dis-

tributions, which is more relevant from the engineering

point of view. Note that in all cases the calibrated dis-

tributions are closer to the instrumental distribution than

the reanalysis. This reinforces the good performance of

the proposed methodology.

5. Conclusions

This paper presents a calibration procedure for wave

hindcast and reanalysis, which allows us to make cor-

rections based on instrumental information and consid-

ering the significant wave height direction of propagation.

FIG. 13. Sample distribution statistics: (a) bias, (b) Pearson’s correlation coefficient (r), (c) RSI, and (d) RMS from

the simulation process.
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From the analysis reported in this paper, the following

conclusions are in order:

1) The parameter estimates for the proposed nonlinear

correction model are obtained solving a mathemati-

cal programming problem, for which computation-

ally efficient algorithms exist.

2) The parameters of the model vary smoothly for

different directions using spline curbs.

3) The method transforms the reanalysis database em-

pirical distribution function to get closer to the empir-

ical distribution function of the instrumental data.

Since data belonging to the upper tail of the distribu-

tion are more relevant for design, the parameter

estimates are obtained through quantiles on a Gumbel

scale.

4) Confidence intervals for diagnostic analysis are also

provided.

5) Despite the additional complexity inherent in the

proposed calibration method with respect to tradi-

tional regression techniques, the improvement achieved

makes the effort worthy.

The calibration process has been tested on different

locations around Spain, correcting significant wave

heights using satellite and buoy data records. Diagnostic

analysis and the study of directional uncertainty show

the good performance and robustness of the calibration

procedure. Note that although the calibration method

has only been applied to significant wave height hind-

casts, the methodology seems promising to be extended

and used with any other geophysical variable, which

includes directional information (e.g., wind velocities).

Note also that though the calibration procedure im-

proves results, there are still discrepancies between cali-

brated and instrumental data, which cannot be filtered

with the directional calibration. Numerical reanalysis

data present less variability in the hourly scale than buoy

data records, this is clearly shown in Fig. 6. The main

reasons are (i) the spatial and temporal smoothing that

all numerical wave prediction results are being through,

and (ii) that the spatial resolution is not enough to model

the physical processes affecting high-frequency wave

energy, which may be important specially for extreme

value analysis. An additional correction trying to ac-

count for high-frequency waves is a subject for further

research.

Another subject for further research is the applicability

of the proposed methodology on a global scale. This will

probably restrict the analysis to satellite information and

it would require an automatic and easy-to-use criterion

for preliminary data selection. However, we expect that

this will also enhance the quality of global reanalysis

databases in the near future.
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APPENDIX

Constrains for Cubic-Spline Definition

For the correct definition of the problem in (7)–(10),

constraints for the evaluation of the cubic-spline

parameters xaj , yaj , zaj , xbj , ybj , zbj ; j5 1, . . . , np are re-

quired. These equations are defined using continuity

conditions on the union between consecutive cubic

polynomials: (i) zero order (no gap exists), (ii) first-order

derivatives, and (iii) second-order derivatives.

Using these conditions and once the parameter values

aj, bj; j 5 1, . . . , n are known, parameters ya are ob-

tained solving the following tridiagonal linear system

of equations:

2h1 h1 0 0 � � � 0

h1 2(h1 1 h2) h2 0 � � � 0

0 h2 2(h2 1 h3) h3 � � � 0

..

. ..
.

1 1 ..
. ..

.

0 � � � 0 hn21 2(hn21 1 hn) hn
0 � � � 0 0 hn 2hn

2
666666666664

3
777777777775
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..

.
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2
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3
77777777775
5 3
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2h1

2
an11 2 an

2hn

� �
a3 2 a2

h2

2
a2 2 a1

h1

� �
a4 2 a3

h3

2
a3 2 a2

h2

� �

..

.

an11 2 an
hn

2
an 2 an21

hn21

� �
a2 2 a1

2h1

2
an11 2 an

2hn

� �

3
777777777777777777777775

,

2
666666666666666666666664

(A1)

which implicitly considers that the first and second de-

rivatives at the beginning (u1 5 0) and at the end (un11 5

2p) of the spline are equal. Analogously, parameters yb

can be obtained replacing index a by b in (A1).

Once ya parameters are known, parameters xaj and zaj
can be calculated straightforwardly using the following

expressions:

xaj 5
1

hj
(aj11 2 aj) 2

hj

3
(2yaj 1 yaj11); j5 1, . . . ,n

zaj 5
yaj11 2 yaj

3hj
; j5 1, . . . , n. (A2)

Analogously, parameters xbj and zbj can be obtained re-

placing index a by b in (A2).
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