401 research outputs found

    Detection of climate change-driven trends in phytoplankton phenology

    Get PDF
    The timing of the annual phytoplankton spring bloom is likely to be altered in response to climate change. Quantifying that response has, however, been limited by the typically coarse temporal resolution (monthly) of global climate models. Here, we use higher resolution model output (maximum 5 days) to investigate how phytoplankton bloom timing changes in response to projected 21st century climate change, and how the temporal resolution of data influences the detection of long-term trends. We find that bloom timing generally shifts later at mid-latitudes and earlier at high and low latitudes by ~5 days per decade to 2100. The spatial patterns of bloom timing are similar in both low (monthly) and high (5 day) resolution data, although initiation dates are later at low resolution. The magnitude of the trends in bloom timing from 2006 to 2100 is very similar at high and low resolution, with the result that the number of years of data needed to detect a trend in phytoplankton phenology is relatively insensitive to data temporal resolution. We also investigate the influence of spatial scales on bloom timing and find that trends are generally more rapidly detectable after spatial averaging of data. Our results suggest that, if pinpointing the start date of the spring bloom is the priority, the highest possible temporal resolution data should be used. However, if the priority is detecting long-term trends in bloom timing, data at a temporal resolution of 20 days are likely to be sufficient. Furthermore, our results suggest that data sources which allow for spatial averaging will promote more rapid trend detection

    Elimination of onchocerciasis in Africa by 2025: an ambitious target requires ambitious interventions

    Get PDF
    To achieve the elimination of onchocerciasis transmission in all African countries will entail enormous challenges, as has been highlighted by the active discussion around onchocerciasis intervention strategies and evaluation procedures in this journal.Serological thresholds for onchocerciasis elimination, adapted for the African setting, need to be established. The Onchocerciasis Technical Advisory Subgroup of the World Health Organization is currently developing improved guidelines to allow country elimination commi

    Future Scenarios of Nitrogen in Europe

    Get PDF
    The future effects of nitrogen in the environment will depend on the extent of nitrogen use and the practical application techniques of nitrogen in a similar way as in the past. Projections and scenarios are appropriate tools for extrapolating current knowledge into thefuture. However,these tools will not allow future system turnovers to be predicted. Approaches• In principle, scenarios of nitrogen use follow the approaches currently used for air pollution,climate ,or ecosystem projections. Short term projections (to 2030) are developed using a ‘baseline’ path of development,which considers abatement options that are consistent with European policy. For medium-term projections (to 2050) and long-term projections, the European Nitrogen Assessment (ENA) applies a ‘storyline’ approach similar to that used in the IPCC SRES scenarios. Beyond 2050 in particular, such story lines also take into account technological and behavioral shift s.Key findings/state of knowledge• The ENA distinguishes between driver-oriented and effect-oriented factors determining nitrogen use. Parameters that cause changes in nitrogen fixation or application are called drivers. In a driver-based approach, it is assumed that any variation of these parameters will also trigger a change in nitrogen pollution. In an effect-based approach, as the adverse effects of nitrogen become evident inthe environment, introduction of nitrogen abatement legislation requiring the application of more efficient abatement measuresis expected. This approach needs to rely on a target that is likely to be maintained in the future (e.g.human health). Nitrogen abatement legislation basedon such targets will aim to counter any growth in adverse environmental effects that occur as a result of increased nitrogen application.• For combustionand industry, technical fixes forabatement are available. Allscenarios agree in projecting a decrease in NOx emissions.Yet agricultural nitrogen use is expected to remain the leading cause of nitrogen release to the environment, as options to reduce emissions are limited. Thus, major changes will occur only if the extent of agricultural production changes, which may possibly be triggered by decreasing population numbers in Europe.The scenarios presented here project modest changes in NH 3 and N 2 O emissions, or nitrateleaching, but do not agree on the direction of these changes.•Agricultural activity (and thus nitrogen loads to the environment) may decrease strongly if the European population adopts a healthier‘low meat’ diet leading to lower nitrogenlosses related to animal husbandry. Change to a ‘healthy diet’ across the EU, which consists of 63% less meat and eggs, would reduce ammonia emissions from animal production by 48%. However, if an agricultural area previously used for animal feed production is utilized for biofuel crops, additional nitrogen fertilizer maybe required, which will partially offset reductions of nitrogen leakage to the environment. Major uncertainties/challenges• International trade in nitrogen-containing goods (agricultural as well as industrial) represents a key uncertainty and is difficult to project. Estimating the demand for such goods for Europe alone may not at all reflect European production and related environmental effects. The industrial use of nitrogen is alsovery poorly understood, but it is expected to continue to grow considerably. The respective environmental impacts of such products cannot be clearly discerned from statistical information.Recommendations• Scenarios need to be continuously updated in terms of economic, technical, and societal trends to reflect improved understanding of these factors. Using nitrogen budgets as tools could improve the consistency of scenarios.JRC.DDG.H.2-Climate change and air qualit

    The Baryon Oscillation Spectroscopic Survey of SDSS-III

    Get PDF
    The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large scale structure. BOSS uses 1.5 million luminous galaxies as faint as i=19.9 over 10,000 square degrees to measure BAO to redshifts z<0.7. Observations of neutral hydrogen in the Lyman alpha forest in more than 150,000 quasar spectra (g<22) will constrain BAO over the redshift range 2.15<z<3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Lyman alpha forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance D_A to an accuracy of 1.0% at redshifts z=0.3 and z=0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Lyman alpha forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D_A(z) and H^{-1}(z) parameters to an accuracy of 1.9% at z~2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.Comment: 49 pages, 16 figures, accepted by A

    Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis

    Get PDF
    Background: Infections due to antibiotic-resistant bacteria are threatening modern health care. However, estimating their incidence, complications, and attributable mortality is challenging. We aimed to estimate the burden of infections caused by antibiotic-resistant bacteria of public health concern in countries of the EU and European Economic Area (EEA) in 2015, measured in number of cases, attributable deaths, and disability-adjusted life-years (DALYs). Methods: We estimated the incidence of infections with 16 antibiotic resistance–bacterium combinations from European Antimicrobial Resistance Surveillance Network (EARS-Net) 2015 data that was country-corrected for population coverage. We multiplied the number of bloodstream infections (BSIs) by a conversion factor derived from the European Centre for Disease Prevention and Control point prevalence survey of health-care-associated infections in European acute care hospitals in 2011–12 to estimate the number of non-BSIs. We developed disease outcome models for five types of infection on the basis of systematic reviews of the literature. Findings: From EARS-Net data collected between Jan 1, 2015, and Dec 31, 2015, we estimated 671 689 (95% uncertainty interval [UI] 583 148–763 966) infections with antibiotic-resistant bacteria, of which 63·5% (426 277 of 671 689) were associated with health care. These infections accounted for an estimated 33 110 (28 480–38 430) attributable deaths and 874 541 (768 837–989 068) DALYs. The burden for the EU and EEA was highest in infants (aged <1 year) and people aged 65 years or older, had increased since 2007, and was highest in Italy and Greece. Interpretation: Our results present the health burden of five types of infection with antibiotic-resistant bacteria expressed, for the first time, in DALYs. The estimated burden of infections with antibiotic-resistant bacteria in the EU and EEA is substantial compared with that of other infectious diseases, and has increased since 2007. Our burden estimates provide useful information for public health decision-makers prioritising interventions for infectious diseases

    A global compilation of coccolithophore calcification rates

    Get PDF
    The biological production of calcium carbonate (CaCO3), a process termed calcification, is a key term in the marine carbon cycle. A major planktonic group responsible for such pelagic CaCO3 production (CP) is the coccolithophores, single-celled haptophytes that inhabit the euphotic zone of the ocean. Satellite-based estimates of areal CP are limited to surface waters and open-ocean areas, with current algorithms utilising the unique optical properties of the cosmopolitan bloom-forming species Emiliania huxleyi, whereas little understanding of deep-water ecology, optical properties or environmental responses by species other than E. huxleyi is currently available to parameterise algorithms or models. To aid future areal estimations and validate future modelling efforts we have constructed a database of 2765 CP measurements, the majority of which were measured using 12 to 24 h incorporation of radioactive carbon (14C) into acid-labile inorganic carbon (CaCO3). We present data collated from over 30 studies covering the period from 1991 to 2015, sampling the Atlantic, Pacific, Indian, Arctic and Southern oceans. Globally, CP in surface waters ( < 20 m) ranged from 0.01 to 8398 µmol C m−3 d−1 (with a geometric mean of 16.1 µmol C m−3 d−1). An integral value for the upper euphotic zone (herein surface to the depth of 1 % surface irradiance) ranged from  < 0.1 to 6 mmol C m−2 d−1 (geometric mean 1.19 mmol C m−2 d−1). The full database is available for download from PANGAEA at https://doi.org/10.1594/PANGAEA.888182

    Physiological and Psychological Effects of Deception on Pacing Strategy and Performance: A Review

    Get PDF
    The aim of an optimal pacing strategy during exercise is to enhance performance whilst ensuring physiological limits are not surpassed, which has been shown to result in a metabolic reserve at the end of the exercise. There has been debate surrounding the theoretical models that have been proposed to explain how pace is regulated, with more recent research investigating a central control of exercise regulation. Deception has recently emerged as a common, practical approach to manipulate key variables during exercise. There are a number of ways in which deception interventions have been designed, each intending to gain particular insights into pacing behaviour and performance. Deception methodologies can be conceptualised according to a number of dimensions such as deception timing (prior to or during exercise), presentation frequency (blind, discontinuous or continuous) and type of deception (performance, biofeedback or environmental feedback). However, research evidence on the effects of deception has been perplexing and the use of complex designs and varied methodologies makes it difficult to draw any definitive conclusions about how pacing strategy and performance are affected by deception. This review examines existing research in the area of deception and pacing strategies, and provides a critical appraisal of the different methodological approaches used to date. It is hoped that this analysis will inform the direction and methodology of future investigations in this area by addressing the mechanisms through which deception impacts upon performance and by elucidating the potential application of deception techniques in training and competitive settings

    Ivermectin treatment of Loa loa hyper-microfilaraemic baboons (Papio anubis): Assessment of microfilarial loads, haematological and biochemical parameters and histopathological changes following treatment.

    Get PDF
    Individuals with high intensity of Loa loa are at risk of developing serious adverse events (SAEs) post treatment with ivermectin. These SAEs have remained unclear and a programmatic impediment to the advancement of community directed treatment with ivermectin. The pathogenesis of these SAEs following ivermectin has never been investigated experimentally. The Loa/baboon (Papio anubis) model can be used to investigate the pathogenesis of Loa-associated encephalopathy following ivermectin treatment in humans. 12 baboons with microfilarial loads > 8,000mf/mL of blood were randomised into four groups: Group 1 (control group receiving no drug), Group 2 receiving ivermectin (IVM) alone, Group 3 receiving ivermectin plus aspirin (IVM + ASA), and Group 4 receiving ivermectin plus prednisone (IVM + PSE). Blood samples collected before treatment and at Day 5, 7 or 10 post treatment, were analysed for parasitological, hematological and biochemical parameters using standard techniques. Clinical monitoring of animals for side effects took place every 6 hours post treatment until autopsy. At autopsy free fluids and a large number of standard organs were collected, examined and tissues fixed in 10% buffered formalin and processed for standard haematoxylin-eosin staining and specific immunocytochemical staining. Mf counts dropped significantly (p0.05). All animals became withdrawn 48 hours after IVM administration. All treated animals recorded clinical manifestations including rashes, itching, diarrhoea, conjunctival haemorrhages, lymph node enlargement, pinkish ears, swollen face and restlessness; one animal died 5 hours after IVM administration. Macroscopic changes in post-mortem tissues observed comprised haemorrhages in the brain, lungs, heart, which seen in all groups given ivermectin but not in the untreated animals. Microscopically, the major cellular changes seen, which were present in all the ivermectin treated animals included microfilariae in varying degrees of degeneration in small vessels. These were frequently associated with fibrin deposition, endothelial changes including damage to the integrity of the blood vessel and the presence of extravascular erythrocytes (haemorrhages). There was an increased presence of eosinophils and other chronic inflammatory types in certain tissues and organs, often in large numbers and associated with microfilarial destruction. Highly vascularized organs like the brain, heart, lungs and kidneys were observed to have more microfilariae in tissue sections. The number of mf seen in the brain and kidneys of animals administered IVM alone tripled that of control animals. Co-administration of IVM + PSE caused a greater increase in mf in the brain and kidneys while the reverse was noticed with the co-administration of IVM + ASA. The treatment of Loa hyper-microfilaraemic individuals with ivermectin produces a clinical spectrum that parallels that seen in Loa hyper-microfilaraemic humans treated with ivermectin. The utilization of this experimental model can contribute to the improved management of the adverse responses in humans

    Changes in appetite, energy intake, body composition and circulating ghrelin constituents during an incremental trekking ascent to high altitude

    Get PDF
    Purpose Circulating acylated ghrelin concentrations are associated with altitude-induced anorexia in laboratory environments, but have never been measured at terrestrial altitude. This study examined time course changes in appetite, energy intake, body composition, and ghrelin constituents during a high-altitude trek. Methods Twelve participants [age: 28(4) years, BMI 23.0(2.1) kg m−2] completed a 14-day trek in the Himalayas. Energy intake, appetite perceptions, body composition, and circulating acylated, des-acylated, and total ghrelin concentrations were assessed at baseline (113 m, 12 days prior to departure) and at three fixed research camps during the trek (3619 m, day 7; 4600 m, day 10; 5140 m, day 12). Results Relative to baseline, energy intake was lower at 3619 m (P = 0.038) and 5140 m (P = 0.016) and tended to be lower at 4600 m (P = 0.056). Appetite perceptions were lower at 5140 m (P = 0.027) compared with baseline. Acylated ghrelin concentrations were lower at 3619 m (P = 0.046) and 4600 m (P = 0.038), and tended to be lower at 5140 m (P = 0.070), compared with baseline. Des-acylated ghrelin concentrations did not significantly change during the trek (P = 0.177). Total ghrelin concentrations decreased from baseline to 4600 m (P = 0.045). Skinfold thickness was lower at all points during the trek compared with baseline (P ≤ 0.001) and calf girth decreased incrementally during the trek (P = 0.010). Conclusions Changes in plasma acylated and total ghrelin concentrations may contribute to the suppression of appetite and energy intake at altitude, but differences in the time course of these responses suggest that additional factors are also involved. Interventions are required to maintain appetite and energy balance during trekking at terrestrial altitudes
    • …
    corecore