9 research outputs found

    The Virtual-Spine Platform—Acquiring, visualizing, and analyzing individual sitting behavior

    Get PDF
    Back pain is a serious medical problem especially for those people sitting over long periods during their daily work. Here we present a system to help users monitoring and examining their sitting behavior. The Virtual-Spine Platform (VSP) is an integrated system consisting of a real-time body position monitoring module and a data visualization module to provide individualized, immediate, and accurate sitting behavior support. It provides a comprehensive spine movement analysis as well as accumulated data visualization to demonstrate behavior patterns within a certain period. The two modules are discussed in detail focusing on the design of the VSP system with adequate capacity for continuous monitoring and a web-based interactive data analysis method to visualize and compare the sitting behavior of different persons. The data was collected in an experiment with a small group of subjects. Using this method, the behavior of five subjects was evaluated over a working day, enabling inferences and suggestions for sitting improvements. The results from the accumulated data module were used to elucidate the basic function of body position recognition of the VSP. Finally, an expert user study was conducted to evaluate VSP and support future developments

    Bottlenecked but long-lived: high genetic diversity retained in white-tailed eagles upon recovery from population decline

    No full text
    Most of the white-tailed eagle (Haliaeetus albicilla) populations in Europe experienced dramatic declines during the twentieth century. However, owing to intense conservation actions and the ban of DDT and other persistent pollutants, populations are currently recovering. We show that despite passing through demographic bottlenecks, white-tailed eagle populations have retained significant levels of genetic diversity. Both genetic and ringing data indicate that migration between populations has not been a major factor for the maintenance of genetic variability. We argue that the long generation time of eagles has acted as an intrinsic buffer against loss of genetic diversity, leading to a shorter effective time of the experienced bottleneck. Notably, conservation actions taken in several small sub-populations have ensured the preservation of a larger proportion of the total genetic diversity than if conservation had focused on the population stronghold in Norway. For conservation programmes targeting other endangered, long-lived species, our results highlight the possibility for local retention of high genetic diversity in isolated remnant populations

    A retrospective investigation of feather corticosterone in a highly contaminated white-tailed eagle (Haliaeetus albicilla) population

    Get PDF
    Exposure to persistent organic pollutants (POPs), such as organochlorines (OCs) and polybrominated diphenyl ethers (PBDEs), is associated with adverse health effects in wildlife. Many POPs have been banned and consequently their environmental concentrations have declined. To assess both temporal trends of POPs and their detrimental impacts, raptors are extensively used as biomonitors due to their high food web position and high contaminant levels. White-tailed eagles (WTEs; Haliaeetus albicilla) in the Baltic ecosystem represent a sentinel species of environmental pollution, as they have suffered population declines due to reproductive failure caused by severe exposure to dichlorodiphenyltrichloroethane (DDT) and polychlorinated biphenyls (PCB) during the 1960s through 1980s. However, there is a lack of long-term studies that cover a wide range of environmental contaminants and their effects at the individual level. In this study, we used 135 pooled samples of shed body feathers collected in 1968–2012 from breeding WTE pairs in Sweden. Feathers constitute a temporal archive for substances incorporated into the feather during growth, including corticosterone, which is the primary avian glucocorticoid and a stress-associated hormone. Here, we analysed the WTE feather pools to investigate annual variations in feather corticosterone (fCORT), POPs (OCs and PBDEs), and stable carbon and nitrogen isotopes (SIs; dietary proxies). We examined whether the expected fluctuations in POPs affected fCORT (8–94 pg. mm− 1 ) in the WTE pairs. Despite clear temporal declining trends in POP concentrations (p 0.05 in all cases). Our results do not support fCORT as a relevant biomarker of contaminant-mediated effects in WTEs despite studying a highly contaminated population. However, although not detecting a relationship between fCORT, POP contamination and diet, fCORT represents a non-destructive and retrospective assessment of long-term stress physiology in wild raptors otherwise not readily available

    White-Tailed Eagle (<i>Haliaeetus albicilla</i>) Body Feathers Document Spatiotemporal Trends of Perfluoroalkyl Substances in the Northern Environment

    No full text
    peer reviewedaudience: researcher, studentWe reconstructed the first long-term (1968-2015) spatiotemporal trends of perfluoroalkyl substances (PFAS) using archived body feathers of white-tailed eagles (Haliaeetus albicilla) from the West Greenland (n = 31), Norwegian (n = 66), and Central Swedish Baltic coasts (n = 50). We observed significant temporal trends of perfluorooctane sulfonamide (FOSA), perfluorooctane sulfonate (PFOS), and perfluoroalkyl carboxylates (∑PFCAs) in all three subpopulations. Concentrations of FOSA and PFOS had started decreasing significantly since the mid-1990s to 2000 in the Greenland and Norwegian subpopulations, consistent with the 3M phase-out, though in sharp contrast to overall increasing trends observed in the Swedish subpopulation. Moreover, ∑PFCA concentrations significantly increased in all three subpopulations throughout the study periods. These temporal trends suggest on-going input of PFOS in the Baltic and of ∑PFCAs in all three regions. Considerable spatial variation in PFAS concentrations and profiles was observed: PFOS concentrations were significantly higher in Sweden, whereas FOSA and ∑PFCA concentrations were similar among the subpopulations. PFOS dominated the PFAS profiles in the Swedish and Norwegian subpopulations, in contrast to the domination of FOSA and ∑PFCAs in the Greenland one. Our spatiotemporal observations underline the usefulness of archived bird of prey feathers in monitoring spatiotemporal PFAS trends and urge for continued monitoring efforts in each of the studied subpopulations. Copyright © 2019 American Chemical Society.Norges Forskningsråd: 255681; Academy of Finland: 311966; China Scholarship Council, CSC6180-00001B, 6180-00002B; Haridus- ja Teadusministeerium: 2012-077483FKZ 03F076

    Temporal trends of legacy organochlorines in different white-tailed eagle (Haliaeetus albicilla) subpopulations: A retrospective investigation using archived feathers

    Get PDF
    Understanding the spatiotemporal patterns of legacy organochlorines (OCs) is often difficult because monitoring practices differ among studies, fragmented study periods, and unaccounted confounding by ecological variables. We therefore reconstructed long-term (1939–2015) and large-scale (West Greenland, Norway, and central Sweden) trends of major legacy OCs using white-tailed eagle (Haliaeetus albicilla) body feathers, to understand the exposure dynamics in regions with different contamination sources and concentrations, as well as the effectiveness of legislations. We included dietary proxies (δ13C and δ15N) in temporal trend models to control for potential dietary plasticity. Consistent with the hypothesised high local pollution sources, levels of polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethanes (DDTs) and hexachlorocyclohexanes (HCHs) in the Swedish subpopulation exceeded those in the other subpopulations. In contrast, chlordanes (CHLs) and hexachlorobenzene (HCB) showed higher concentrations in Greenland, suggesting the importance of long-range transport. The models showed significantly decreasing trends for all OCs in Sweden in 1968–2011 except for CHLs, which only decreased since the 1980s. Nevertheless, median concentrations of DDTs and PCBs remained elevated in the Swedish subpopulation throughout the 1970s, suggesting that the decreases only commenced after the implementation of regulations during the 1970s. We observed significant trends of increasing concentrations of PCBs, CHLs and HCB in Norway from the 1930s to the 1970s/1980s and decreasing concentrations thereafter. All OC concentrations, except those of PCBs were generally significantly decreasing in the Greenland subpopulation in 1985-2013. All three subpopulations showed generally increasing proportions of the more persistent compounds (CB 153, p.p′-DDE and β-HCH) and decreasing proportions of the less persistent ones (CB 52, p.p′-DDT, α- and γ-HCH). Declining trends of OC concentrations may imply the decreasing influence of legacy OCs in these subpopulations. Finally, our results demonstrate the usefulness of archived museum feathers in retrospective monitoring of spatiotemporal trends of legacy OCs using birds of prey as sentinels

    From Tool to Partner: The Evolution of Human-Computer Interaction

    No full text

    Current state of knowledge on biological effects from contaminants on arctic wildlife and fish

    No full text
    Since the last Arctic Monitoring and Assessment Programme (AMAP) effort to review biological effects of the exposure to organohalogen compounds (OHCs) in Arctic biota, there has been a considerable number of new Arctic effect studies. Here, we provide an update on the state of the knowledge of OHC, and also include mercury, exposure and/or associated effects in key Arctic marine and terrestrial mammal and bird species as well as in fish by reviewing the literature published since the last AMAP assessment in 2010. We aimed at updating the knowledge of how single but also combined health effects are or can be associated to the exposure to single compounds or mixtures of OHCs. We also focussed on assessing both potential individual as well as population health impacts using population-specific exposure data post 2000. We have identified quantifiable effects on vitamin metabolism, immune functioning, thyroid and steroid hormone balances, oxidative stress, tissue pathology, and reproduction. As with the previous assessment, a wealth of documentation is available for biological effects in marine mammals and seabirds, and sentinel species such as the sledge dog and Arctic fox, but information for terrestrial vertebrates and fish remain scarce. While hormones and vitamins are thoroughly studied, oxidative stress, immunotoxic and reproductive effects need further investigation. Depending on the species and population, some OHCs and mercury tissue contaminant burdens post 2000 were observed to be high enough to exceed putative risk threshold levels that have been previously estimated for non-target species or populations outside the Arctic. In this assessment, we made use of risk quotient calculations to summarize the cumulative effects of different OHC classes and mercury for which critical body burdens can be estimated for wildlife across the Arctic. As our ultimate goal is to better predict or estimate the effects of OHCs and mercury in Arctic wildlife at the individual, population and ecosystem level, there remain numerous knowledge gaps on the biological effects of exposure in Arctic biota. These knowledge gaps include the establishment of concentration thresholds for individual compounds as well as for realistic cocktail mixtures that in fact indicate biologically relevant, and not statistically determined, health effects for specific species and subpopulations. Finally, we provide future perspectives on understanding Arctic wildlife health using new in vivo, in vitro, and in silico techniques, and provide case studies on multiple stressors to show that future assessments would benefit from significant efforts to integrate human health, wildlife ecology and retrospective and forecasting aspects into assessing the biological effects of OHC and mercury exposure in Arctic wildlife and fish

    Inorganic Photovoltaics - Planar and Nanostructured Devices

    Get PDF
    Since its invention in the 1950s, semiconductor solar cell technology has evolved in great leaps and bounds. Solar power is now being considered as a serious leading contender for replacing fossil fuel based power generation. This article reviews the evolution and current state, and potential areas of near future research focus, of leading inorganic materials based solar cells, including bulk crystalline, amorphous thin-films, and nanomaterials based solar cells. Bulk crystalline silicon solar cells continue to dominate the solar power market, and continued efforts at device fabrication improvements, and device topology advancements are discussed. III-V compound semiconductor materials on c-Si for solar power generation are also reviewed. Developments in thin-film based solar cells are reviewed, with a focus on amorphous silicon, copper zinc tin sulfide, cadmium telluride, as well as nanostructured Cadmium telluride. Recent developments in the use of nano-materials for solar power generation, including silicon and gallium arsenide nanowires, are also reviewed
    corecore