8 research outputs found
Population Response of Three Quail Species to Habitat Restoration in South Texas
Maintaining and increasing usable space is paramount for maintaining and increasing wild quail. Aside from weather and other factors that can temporarily reduce densities, range-wide, no factor has as much influence on quail populations as the amount of habitat present across the landscape. In the field of quail management, ‘‘bad news’’ is the norm, as many articles begin by explaining how a select species has declined. Here we provide good news and use 4 empirical examples of population increases for 3 quail species following creation of usable space and restoration of patch connectivity. From 2008–2014, a suite of independent projects aimed at increasing usable space for quail was initiated across South Texas. These projects included 3 focused on northern bobwhites (Colinus virginianus), 1 focused on scaled quail (Callipepla squamata), and 1 landowner-executed project focused on Montezuma quail (Cyrtonyx montezumae). Through the correction of attributes limiting habitat, bobwhite numbers increased 22–378% across 2 studies. On one particular study site, native grassland restoration resulted in the colonization of bobwhites from adjacent areas to 1 bobwhite/1.2 ha from nearly 0. For scaled quail in South Texas, reducing buffelgrass standing crop via grazing from about 2,240 kg/ha to 1,008 kg/ha resulted in the recolonization of a previously unoccupied habitat patch to a density of 1 scaled quail/6 ha. Finally, clearing monotypic stands of the invasive native plant, ash juniper (Juniperus ashei) in the Edwards Plateau of Texas, resulted in the reestablishment of native grasses and forbs and thus recolonization by Montezuma quail from nearby areas. Although habitat restoration and management can be a painstaking and lengthy process, addressing limiting factors to quail occupancy is the only known way to increase wild quail populations. We hope that highlighting these particular studies will provide inspiration to those interested in restoring and increasing quail across the US
To which world regions does the valence–dominance model of social perception apply?
Over the past 10 years, Oosterhof and Todorov’s valence–dominance model has emerged as the most prominent account of
how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social
judgements of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether
these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov’s methodology across
11 world regions, 41 countries and 11,570 participants. When we used Oosterhof and Todorov’s original analysis strategy,
the valence–dominance model generalized across regions. When we used an alternative methodology to allow for correlated
dimensions, we observed much less generalization. Collectively, these results suggest that, while the valence–dominance
model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed
when we use different extraction methods and correlate and rotate the dimension reduction solution.C.L. was supported by the Vienna Science and Technology Fund (WWTF VRG13-007);
L.M.D. was supported by ERC 647910 (KINSHIP); D.I.B. and N.I. received funding from
CONICET, Argentina; L.K., F.K. and Á. Putz were supported by the European Social
Fund (EFOP-3.6.1.-16-2016-00004; ‘Comprehensive Development for Implementing
Smart Specialization Strategies at the University of Pécs’). K.U. and E. Vergauwe were
supported by a grant from the Swiss National Science Foundation (PZ00P1_154911 to E.
Vergauwe). T.G. is supported by the Social Sciences and Humanities Research Council
of Canada (SSHRC). M.A.V. was supported by grants 2016-T1/SOC-1395 (Comunidad
de Madrid) and PSI2017-85159-P (AEI/FEDER UE). K.B. was supported by a grant
from the National Science Centre, Poland (number 2015/19/D/HS6/00641). J. Bonick
and J.W.L. were supported by the Joep Lange Institute. G.B. was supported by the Slovak
Research and Development Agency (APVV-17-0418). H.I.J. and E.S. were supported
by a French National Research Agency ‘Investissements d’Avenir’ programme grant
(ANR-15-IDEX-02). T.D.G. was supported by an Australian Government Research
Training Program Scholarship. The Raipur Group is thankful to: (1) the University
Grants Commission, New Delhi, India for the research grants received through its
SAP-DRS (Phase-III) scheme sanctioned to the School of Studies in Life Science;
and (2) the Center for Translational Chronobiology at the School of Studies in Life
Science, PRSU, Raipur, India for providing logistical support. K. Ask was supported by
a small grant from the Department of Psychology, University of Gothenburg. Y.Q. was
supported by grants from the Beijing Natural Science Foundation (5184035) and CAS
Key Laboratory of Behavioral Science, Institute of Psychology. N.A.C. was supported
by the National Science Foundation Graduate Research Fellowship (R010138018). We
acknowledge the following research assistants: J. Muriithi and J. Ngugi (United States
International University Africa); E. Adamo, D. Cafaro, V. Ciambrone, F. Dolce and E.
Tolomeo (Magna Græcia University of Catanzaro); E. De Stefano (University of Padova);
S. A. Escobar Abadia (University of Lincoln); L. E. Grimstad (Norwegian School of
Economics (NHH)); L. C. Zamora (Franklin and Marshall College); R. E. Liang and R.
C. Lo (Universiti Tunku Abdul Rahman); A. Short and L. Allen (Massey University, New
Zealand), A. Ateş, E. Güneş and S. Can Özdemir (Boğaziçi University); I. Pedersen and T.
Roos (Åbo Akademi University); N. Paetz (Escuela de Comunicación Mónica Herrera);
J. Green (University of Gothenburg); M. Krainz (University of Vienna, Austria); and B.
Todorova (University of Vienna, Austria). The funders had no role in study design, data
collection and analysis, decision to publish or preparation of the manuscript.https://www.nature.com/nathumbehav/am2023BiochemistryGeneticsMicrobiology and Plant Patholog
A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic.
The COVID-19 pandemic has increased negative emotions and decreased positive emotions globally. Left unchecked, these emotional changes might have a wide array of adverse impacts. To reduce negative emotions and increase positive emotions, we tested the effectiveness of reappraisal, an emotion-regulation strategy that modifies how one thinks about a situation. Participants from 87 countries and regions (n = 21,644) were randomly assigned to one of two brief reappraisal interventions (reconstrual or repurposing) or one of two control conditions (active or passive). Results revealed that both reappraisal interventions (vesus both control conditions) consistently reduced negative emotions and increased positive emotions across different measures. Reconstrual and repurposing interventions had similar effects. Importantly, planned exploratory analyses indicated that reappraisal interventions did not reduce intentions to practice preventive health behaviours. The findings demonstrate the viability of creating scalable, low-cost interventions for use around the world
To which world regions does the valence-dominance model of social perception apply?
Over the past 10 years, Oosterhof and Todorov’s valence–dominance model has emerged as the most prominent account of how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social judgements of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov’s methodology across 11 world regions, 41 countries and 11,570 participants. When we used Oosterhof and Todorov’s original analysis strategy, the valence–dominance model generalized across regions. When we used an alternative methodology to allow for correlated dimensions, we observed much less generalization. Collectively, these results suggest that, while the valence–dominance model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed when we use different extraction methods and correlate and rotate the dimension reduction solution
To Which World Regions Does the Valence-Dominance Model of Social Perception Apply?
Over the past 10 years, Oosterhof and Todorov’s valence–dominance model has emerged as the most prominent account of how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social judgements of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov’s methodology across 11 world regions, 41 countries and 11,570 participants. When we used Oosterhof and Todorov’s original analysis strategy, the valence–dominance model generalized across regions. When we used an alternative methodology to allow for correlated dimensions, we observed much less generalization. Collectively, these results suggest that, while the valence–dominance model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed when we use different extraction methods and correlate and rotate the dimension reduction solution
To Which World Regions Does the Valence-Dominance Model of Social Perception Apply?
Over the past 10 years, Oosterhof and Todorov’s valence–dominance model has emerged as the most prominent account of how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social judgements of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov’s methodology across 11 world regions, 41 countries and 11,570 participants. When we used Oosterhof and Todorov’s original analysis strategy, the valence–dominance model generalized across regions. When we used an alternative methodology to allow for correlated dimensions, we observed much less generalization. Collectively, these results suggest that, while the valence–dominance model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed when we use different extraction methods and correlate and rotate the dimension reduction solution