16 research outputs found

    Optimal operating MR contrast for brain ventricle parcellation

    Full text link
    Development of MR harmonization has enabled different contrast MRIs to be synthesized while preserving the underlying anatomy. In this paper, we use image harmonization to explore the impact of different T1-w MR contrasts on a state-of-the-art ventricle parcellation algorithm VParNet. We identify an optimal operating contrast (OOC) for ventricle parcellation; by showing that the performance of a pretrained VParNet can be boosted by adjusting contrast to the OOC

    Harmonization-enriched domain adaptation with light fine-tuning for multiple sclerosis lesion segmentation

    Full text link
    Deep learning algorithms utilizing magnetic resonance (MR) images have demonstrated cutting-edge proficiency in autonomously segmenting multiple sclerosis (MS) lesions. Despite their achievements, these algorithms may struggle to extend their performance across various sites or scanners, leading to domain generalization errors. While few-shot or one-shot domain adaptation emerges as a potential solution to mitigate generalization errors, its efficacy might be hindered by the scarcity of labeled data in the target domain. This paper seeks to tackle this challenge by integrating one-shot adaptation data with harmonized training data that incorporates labels. Our approach involves synthesizing new training data with a contrast akin to that of the test domain, a process we refer to as "contrast harmonization" in MRI. Our experiments illustrate that the amalgamation of one-shot adaptation data with harmonized training data surpasses the performance of utilizing either data source in isolation. Notably, domain adaptation using exclusively harmonized training data achieved comparable or even superior performance compared to one-shot adaptation. Moreover, all adaptations required only minimal fine-tuning, ranging from 2 to 5 epochs for convergence

    Rapid Brain Meninges Surface Reconstruction with Layer Topology Guarantee

    Full text link
    The meninges, located between the skull and brain, are composed of three membrane layers: the pia, the arachnoid, and the dura. Reconstruction of these layers can aid in studying volume differences between patients with neurodegenerative diseases and normal aging subjects. In this work, we use convolutional neural networks (CNNs) to reconstruct surfaces representing meningeal layer boundaries from magnetic resonance (MR) images. We first use the CNNs to predict the signed distance functions (SDFs) representing these surfaces while preserving their anatomical ordering. The marching cubes algorithm is then used to generate continuous surface representations; both the subarachnoid space (SAS) and the intracranial volume (ICV) are computed from these surfaces. The proposed method is compared to a state-of-the-art deformable model-based reconstruction method, and we show that our method can reconstruct smoother and more accurate surfaces using less computation time. Finally, we conduct experiments with volumetric analysis on both subjects with multiple sclerosis and healthy controls. For healthy and MS subjects, ICVs and SAS volumes are found to be significantly correlated to sex (p<0.01) and age (p<0.03) changes, respectively.Comment: ISBI 2023 Ora

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    The Sacramento River

    No full text

    The Sacramento River

    No full text

    Infrastructure Builds the State

    No full text

    Bibliography

    No full text

    Notes

    No full text

    The Mississippi River

    No full text
    corecore