246 research outputs found
Heterogeneity of the humoral immune response following Staphylococcus aureus bacteremia
Expanding knowledge on the humoral immune response in Staphylococcus aureus-infected patients is a mandatory step in the development of vaccines and immunotherapies. Here, we present novel insights into the antibody responses following S. aureus bacteremia. Fifteen bacteremic patients were followed extensively from diagnosis onwards (median 29 days, range 9-74). S. aureus strains (median 3, range 1-6) and serial serum samples (median 16, range 6-27) were collected. Strains were genotyped by pulsed-field gel electrophoresis (PFGE) and genes encoding 19 staphylococcal proteins were detected by polymerase chain reaction (PCR). The levels of IgG, IgA, and IgM directed to these proteins were determined using bead-based flow cytometry. All strains isolated from individual patients were PFGE-identical. The genes encoding clumping factor (Clf) A, ClfB, and iron-responsive surface-determinant (Isd) A were detected in all isolates. Antigen-specific IgG levels increased more frequently than IgA or IgM levels. In individual patients, different proteins induced an immune response and the dynamics clearly differed. Anti-ClfB, anti-IsdH, and anti-fibronectin-binding protein A IgG levels increased in 7 of 13 adult patients (p < 0.05). The anti-IsdA IgG level increased in 12 patients (initial to peak level: 1.13-10.72 fold; p < 0.01). Peak level was reached 7-37 days after diagnosis. In a bacteremic 5-day-old newborn, antistaphylococcal IgG levels declined from diagnosis onwards. In conclusion, each bacteremic patient develops a unique immune response directed to different staphylococcal proteins. Therefore, vaccines should be based on multiple components. IsdA is immunogenic and, therefore, produced in nearly all bacteremic patients.
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Visualization of Glutamine Transporter Activities in Living Cells Using Genetically Encoded Glutamine Sensors
Glutamine plays a central role in the metabolism of critical biological molecules such as amino acids, proteins, neurotransmitters, and glutathione. Since glutamine metabolism is regulated through multiple enzymes and transporters, the cellular glutamine concentration is expected to be temporally dynamic. Moreover, differentiation in glutamine metabolism between cell types in the same tissue (e.g. neuronal and glial cells) is often crucial for the proper function of the tissue as a whole, yet assessing cell-type specific activities of transporters and enzymes in such heterogenic tissue by physical fractionation is extremely challenging. Therefore, a method of reporting glutamine dynamics at the cellular level is highly desirable. Genetically encoded sensors can be targeted to a specific cell type, hence addressing this knowledge gap. Here we report the development of Föster Resonance Energy Transfer (FRET) glutamine sensors based on improved cyan and yellow fluorescent proteins, monomeric Teal Fluorescent Protein (mTFP)1 and venus. These sensors were found to be specific to glutamine, and stable to pH-changes within a physiological range. Using cos7 cells expressing the human glutamine transporter ASCT2 as a model, we demonstrate that the properties of the glutamine transporter can easily be analyzed with these sensors. The range of glutamine concentration change in a given cell can also be estimated using sensors with different affinities. Moreover, the mTFP1-venus FRET pair can be duplexed with another FRET pair, mAmetrine and tdTomato, opening up the possibility for real-time imaging of another molecule. These novel glutamine sensors will be useful tools to analyze specificities of glutamine metabolism at the single-cell level
Changing patterns in diagnostic strategies and the treatment of blunt injury to solid abdominal organs
Background: In recent years there has been increasing interest shown in the nonoperative management (NOM) of blunt traumatic injury. The growing use of NOM for blunt abdominal organ injury has been made possible because of the progress made in the quality and availability of the multidetector computed tomography (MDCT) scan and the development of minimally invasive intervention options such as angioembolization. Aim: The purpose of this review is to describe the changes that have been made over the past decades in the management of blunt trauma to the liver, spleen and kidney. Results: The management of blunt abdominal injury has changed considerably. Focused assessment with sonography for trauma (FAST) examination has replaced diagnostic peritoneal lavage as diagnostic modality in the primary survey. MDCT scanning with intravenous contrast is now the gold standard diagnostic modality in hemodynamically stable patients with intra-abdominal fluid detected with FAST. One of the current discussions in the l erature is whether a whole body MDCT survey should be implemented in the primary survey. Conclusions The progress in imaging techniques has contributed to NOM being currently the treatment of choice for hemodynamically stable patients. Angioembolization can be used as an adjunct to NOM and has increased the succe
Adding Saxagliptin to Metformin Extended Release (XR) or Uptitration of Metformin XR: Efficacy on Daily Glucose Measures
Keratinocytes as Depository of Ammonium-Inducible Glutamine Synthetase: Age- and Anatomy-Dependent Distribution in Human and Rat Skin
In inner organs, glutamine contributes to proliferation, detoxification and establishment of a mechanical barrier, i.e., functions essential for skin, as well. However, the age-dependent and regional peculiarities of distribution of glutamine synthetase (GS), an enzyme responsible for generation of glutamine, and factors regulating its enzymatic activity in mammalian skin remain undisclosed. To explore this, GS localization was investigated using immunohistochemistry and double-labeling of young and adult human and rat skin sections as well as skin cells in culture. In human and rat skin GS was almost completely co-localized with astrocyte-specific proteins (e.g. GFAP). While GS staining was pronounced in all layers of the epidermis of young human skin, staining was reduced and more differentiated among different layers with age. In stratum basale and in stratum spinosum GS was co-localized with the adherens junction component ß-catenin. Inhibition of, glycogen synthase kinase 3β in cultured keratinocytes and HaCaT cells, however, did not support a direct role of ß-catenin in regulation of GS. Enzymatic and reverse transcriptase polymerase chain reaction studies revealed an unusual mode of regulation of this enzyme in keratinocytes, i.e., GS activity, but not expression, was enhanced about 8–10 fold when the cells were exposed to ammonium ions. Prominent posttranscriptional up-regulation of GS activity in keratinocytes by ammonium ions in conjunction with widespread distribution of GS immunoreactivity throughout the epidermis allows considering the skin as a large reservoir of latent GS. Such a depository of glutamine-generating enzyme seems essential for continuous renewal of epidermal permeability barrier and during pathological processes accompanied by hyperammonemia
First transmission of electrons and ions through the KATRIN beamline
The Karlsruhe Tritium Neutrino (KATRIN) experiment is a large-scale effort to probe the absolute neutrino mass scale with a sensitivity of 0.2 eV (90% confidence level), via a precise measurement of the endpoint spectrum of tritium β-decay. This work documents several KATRIN commissioning milestones: the complete assembly of the experimental beamline, the successful transmission of electrons from three sources through the beamline to the primary detector, and tests of ion transport and retention. In the First Light commissioning campaign of autumn 2016, photoelectrons were generated at the rear wall and ions were created by a dedicated ion source attached to the rear section; in July 2017, gaseous 83mKr was injected into the KATRIN source section, and a condensed 83mKr source was deployed in the transport section. In this paper we describe the technical details of the apparatus and the configuration for each measurement, and give first results on source and system performance. We have successfully achieved transmission from all four sources, established system stability, and characterized many aspects of the apparatus
Erratum: "Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data" (2019, ApJ, 879, 10)
This is a correction for 2019 ApJ 879 1
- …
