1,269 research outputs found
Spin-Rotation Symmetry Breaking in the Superconducting State of CuxBi2Se3
Spontaneous symmetry breaking is an important concept for understanding
physics ranging from the elementary particles to states of matter. For example,
the superconducting state breaks global gauge symmetry, and unconventional
superconductors can break additional symmetries. In particular, spin rotational
symmetry is expected to be broken in spin-triplet superconductors. However,
experimental evidence for such symmetry breaking has not been conclusively
obtained so far in any candidate compounds. Here, by 77Se nuclear magnetic
resonance measurements, we show that spin rotation symmetry is spontaneously
broken in the hexagonal plane of the electron-doped topological insulator
Cu0.3Bi2Se3 below the superconducting transition temperature Tc=3.4 K. Our
results not only establish spin-triplet superconductivity in this compound, but
may also serve to lay a foundation for the research of topological
superconductivity
Holographic three-point functions of giant gravitons
Working within the AdS/CFT correspondence we calculate the three-point
function of two giant gravitons and one pointlike graviton using methods of
semiclassical string theory and considering both the case where the giant
gravitons wrap an S^3 in S^5 and the case where the giant gravitons wrap an S^3
in AdS_5. We likewise calculate the correlation function in N=4 SYM using two
Schur polynomials and a single trace chiral primary. We find that the gauge and
string theory results have structural similarities but do not match perfectly,
and interpret this in terms of the Schur polynomials' inability to interpolate
between dual giant and pointlike gravitons.Comment: 21 page
Recommended from our members
Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia.
Carriers of large recurrent copy number variants (CNVs) have a higher risk of developing neurodevelopmental disorders. The 16p11.2 distal CNV predisposes carriers to e.g., autism spectrum disorder and schizophrenia. We compared subcortical brain volumes of 12 16p11.2 distal deletion and 12 duplication carriers to 6882 non-carriers from the large-scale brain Magnetic Resonance Imaging collaboration, ENIGMA-CNV. After stringent CNV calling procedures, and standardized FreeSurfer image analysis, we found negative dose-response associations with copy number on intracranial volume and on regional caudate, pallidum and putamen volumes (β = -0.71 to -1.37; P < 0.0005). In an independent sample, consistent results were obtained, with significant effects in the pallidum (β = -0.95, P = 0.0042). The two data sets combined showed significant negative dose-response for the accumbens, caudate, pallidum, putamen and ICV (P = 0.0032, 8.9 × 10-6, 1.7 × 10-9, 3.5 × 10-12 and 1.0 × 10-4, respectively). Full scale IQ was lower in both deletion and duplication carriers compared to non-carriers. This is the first brain MRI study of the impact of the 16p11.2 distal CNV, and we demonstrate a specific effect on subcortical brain structures, suggesting a neuropathological pattern underlying the neurodevelopmental syndromes
Quantum Acoustics with Surface Acoustic Waves
It has recently been demonstrated that surface acoustic waves (SAWs) can
interact with superconducting qubits at the quantum level. SAW resonators in
the GHz frequency range have also been found to have low loss at temperatures
compatible with superconducting quantum circuits. These advances open up new
possibilities to use the phonon degree of freedom to carry quantum information.
In this paper, we give a description of the basic SAW components needed to
develop quantum circuits, where propagating or localized SAW-phonons are used
both to study basic physics and to manipulate quantum information. Using
phonons instead of photons offers new possibilities which make these quantum
acoustic circuits very interesting. We discuss general considerations for SAW
experiments at the quantum level and describe experiments both with SAW
resonators and with interaction between SAWs and a qubit. We also discuss
several potential future developments.Comment: 14 pages, 12 figure
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
Pharmacological Characterization of [3H]CHIBA-3007 Binding to Glycine Transporter 1 in the Rat Brain
Glycine transporter-1 (GlyT-1) in glial cells regulates extracellular levels of glycine, which acts as an obligatory co-agonist at the N-methyl-D-aspartate (NMDA) receptors in the brain. In the present study, we developed a novel radioligand, [3H]3-chloro-N-((S)-((R)-1-methylpiperidin-2-yl)(thiophen- 3-yl)methyl)-4- (trifluoromethyl)picolinamide ([3H]CHIBA-3007), for studying GlyT-1 in the brain. The presence of a single saturable high-affinity binding component for [3H]CHIBA-3007 binding to the rat brain membranes was detected. Scatchard analysis revealed an apparent equilibrium dissociation constant (Kd) of 1.61±0.16 nM and a maximal number of binding sites (Bmax) of 692.8±22.8 fmol/mg protein (mean ± SEM, n = 3). The specific binding of [3H]CHIBA-3007 was inhibited by a number of GlyT-1 inhibitors, such as CHIBA-3007, desmethyl-CHIBA-3007, CHIBA-3008, SSR504734, NFPS/ALX5407, LY2365109 and Org24598, consistent with the pharmacological profiles of GlyT-1 inhibitors. Interestingly, the potency of eight GlyT-1 inhibitors (CHIBA-3007, desmethyl-CHIBA-3007, NFPS/ALX5407, LY2365109, Org24598, SSR504734, sarcosine, and glycine) for blocking in vitro specific binding of [3H]CHIBA-3007 was significantly correlated with the potency of these inhibitors for inhibiting [14C]glycine uptake in the rat brain membranes. In contrast, the GlyT-2 inhibitor ALX1393 exhibited very weak for [3H]CHIBA-3007 binding. Furthermore, the regional distribution of [3H]CHIBA-3007 binding in the rat brain was similar to the previously reported distribution of GlyT-1. The present findings suggest that [3H]CHIBA-3007 would be a useful new radioligand for studying GlyT-1 in the brain
Visualizing chemical states and defects induced magnetism of graphene oxide by spatially-resolved-X-ray microscopy and spectroscopy
[[abstract]]This investigation studies the various magnetic behaviors of graphene oxide (GO) and reduced
graphene oxides (rGOs) and elucidates the relationship between the chemical states that involve
defects therein and their magnetic behaviors in GO sheets. Magnetic hysteresis loop reveals that the
GO is ferromagnetic whereas photo-thermal moderately reduced graphene oxide (M-rGO) and heavily
reduced graphene oxide (H-rGO) gradually become paramagnetic behavior at room temperature.
Scanning transmission X-ray microscopy and corresponding X-ray absorption near-edge structure
spectroscopy were utilized to investigate thoroughly the variation of the C 2p(π*) states that are
bound with oxygen-containing and hydroxyl groups, as well as the C 2p(σ*)-derived states in flat
and wrinkle regions to clarify the relationship between the spatially-resolved chemical states and
the magnetism of GO, M-rGO and H-rGO. The results of X-ray magnetic circular dichroism further
support the finding that C 2p(σ*)-derived states are the main origin of the magnetism of GO. Based
on experimental results and first-principles calculations, the variation in magnetic behavior from GO
to M-rGO and to H-rGO is interpreted, and the origin of ferromagnetism is identified as the C 2p(σ*)-
derived states that involve defects/vacancies rather than the C 2p(π*) states that are bound with
oxygen-containing and hydroxyl groups on GO sheets.[[notice]]補正完
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Wound dressings for a proteolytic-rich environment
Wound dressings have experienced continuous and significant changes over the years based on the knowledge of the biochemical events associated with chronic wounds. The development goes from natural
materials used to just cover and conceal the wound to interactive materials that can facilitate the healing process, addressing specific issues in non-healing wounds. These
new types of dressings often relate with the proteolytic wound environment and the bacteria load to enhance the healing. Recently, the wound dressing research is focusing on the replacement of synthetic polymers by natural protein materials to delivery bioactive agents to the wounds. This
article provides an overview on the novel protein-based wound dressings such as silk fibroin keratin and elastin.
The improved properties of these dressings, like the release of antibiotics and growth factors, are discussed. The different types of wounds and the effective parameters of
healing process will be reviewed
- …
