350 research outputs found

    Conceptual Ecological Modelling of Shallow Sublittoral Sand Habitats to Inform Indicator Selection

    Get PDF
    The purpose of this study is to produce a series of conceptual ecological models (CEMs) which represent shallow sublittoral sand habitats in the UK. CEMs are diagrammatic representations of the influences and processes which occur within an ecosystem. They can be used to identify critical aspects of an ecosystem which may be taken forward for further study, or serve as the basis for the selection of indicators for environmental monitoring purposes. The models produced by this project are control diagrams, representing the unimpacted state of the environment free from anthropogenic pressures. The project scope included the Marine Strategy Framework Directive (MSFD) predominant habitat type ‘shallow sublittoral sand’. This definition includes those habitats which fall into the EUNIS Level 4 classifications A5.23 Infralittoral Fine Sand, A5.24 Infralittoral Muddy Sand, A5.25 Circalittoral Fine Sand and A5.26 Circalittoral Muddy Sand, along with their constituent Level 5 biotopes which are relevant to UK waters. A species list of characterising fauna to be included within the scope of the models was identified using an iterative process to refine the full list of species found within the relevant Level 5 biotopes. A literature review was conducted to gather evidence regarding species traits and information to inform the models. All information gathered during the literature review was entered into a data logging pro forma spreadsheet which accompanies this report. Wherever possible, attempts were made to collect information from UK-specific peer-reviewed studies, although other sources were used where necessary. All data gathered was subject to a detailed confidence assessment. Expert judgement by the project team was utilised to provide information for aspects of the models for which references could not be sourced within the project timeframe. A model hierarchy was developed based on groups of fauna with similar species traits which aligned with previous sensitivity studies of ecological groups. A general model was produced to indicate the high level drivers, inputs, biological assemblages, ecosystem processes and outputs which occur in shallow sublittoral sand habitats. In addition to this, four detailed sub-models were produced. Each focussed on a particular functional group of fauna within the habitat: “suspension and deposit feeding infauna”, “small mobile fauna and tube dwelling species”, “mobile epifauna, scavengers and predators”, and “attached epifauna and macroalgae”. Each sub-model is accompanied by an associated confidence model which presents confidence in the links between each model component. The models are split into seven levels and take spatial and temporal scale into account through their design, as well as magnitude and direction of influence. The seven levels include regional to global drivers, water column processes, local inputs/processes at the seabed, habitat and biological assemblage, output processes, local ecosystem functions, and regional to global ecosystem functions. The models indicate that whilst the high level drivers which affect each functional group are largely similar, the output processes performed by the biota and the resulting ecosystem functions vary both in number and importance between groups. Confidence within the models as a whole is generally high, reflecting the level of information gathered during the literature review. Important drivers which influence the ecosystem include factors such as wave exposure, depth, water currents, climate and propagule supply. These factors, in combination with seabed and water column processes such as primary production, seabed mobility, suspended sediments, water chemistry and temperature and recruitment define and influence the biological assemblages. In addition, the habitat sediment type plays an important factor in shaping the biology of the habitat. Conceptual Ecological Modelling of Shallow Sublittoral Sand Habitats Output processes are variable between functional faunal groups depending on the fauna present. Important processes include secondary production, biodeposition, bioturbation, bioengineering and the supply of propagules. These influence ecosystem functions at the local scale such as nutrient and biogeochemical cycling, supply of food resources, sediment stability, habitat provision and in some cases microbial activity. The export of biodiversity and organic matter, biodiversity enhancement and biotope stability are the resulting ecosystem functions which occur at the regional to global scale. Features within the models which are most useful for monitoring habitat status and change due to natural variation have been identified using the information gathered during the literature review, through interpretation of the models and through the application of expert judgement. Features within the models which may be useful for monitoring to identify anthropogenic causes of change within the ecosystem have also been identified. Physical and biological features of the ecosystem have mostly been identified as potential indicators to monitor natural variation, whilst physical features and output processes have predominantly been identified as most likely to indicate change due to anthropogenic pressures

    Conceptual Ecological Modelling of Shallow Sublittoral Mixed Sediment Habitats to Inform Indicator Selection.

    Get PDF
    The purpose of this study is to produce a series of conceptual ecological models (CEMs) which represent shallow sublittoral mixed sediment habitats in the UK. CEMs are diagrammatic representations of the influences and processes which occur within an ecosystem. They can be used to identify critical aspects of an ecosystem which may be taken forward for further study, or serve as the basis for the selection of indicators for environmental monitoring purposes. The models produced by this project are control diagrams, representing the unimpacted state of the environment free from anthropogenic pressures. The project scope included the Marine Strategy Framework Directive (MSFD) predominant habitat type ‘shallow sublittoral mixed sediment’. This definition includes those habitats which fall into the EUNIS Level 4 classifications A5.43 Infralittoral Mixed Sediments and A5.44 Circalittoral Mixed Sediments, along with their constituent Level 5 biotopes which are relevant to UK waters. A species list of characterising fauna to be included within the scope of the models was identified using an iterative process to refine the full list of species found within the relevant Level 5 biotopes. A literature review was conducted to gather evidence regarding species traits and information to inform the models. All information gathered during the literature review was entered into a data logging pro forma spreadsheet which accompanies this report. Wherever possible, attempts were made to collect information from UK-specific peer-reviewed studies, although other sources were used where necessary. All data gathered was subject to a detailed confidence assessment. Expert judgement by the project team was utilised to provide information for aspects of the models for which references could not be sourced within the project timeframe. A model hierarchy was developed based on groups of fauna with similar species traits which aligned with previous sensitivity studies of ecological groups. A general model was produced to indicate the high level drivers, inputs, biological assemblages, ecosystem processes and outputs which occur in shallow sublittoral mixed sediment habitats. In addition to this, five detailed sub-models were produced. Each focussed on a particular functional group of fauna within the habitat: ‘temporary or permanently attached epifauna’, ‘mobile epifauna, scavengers and predators’, ‘suspension and deposit feeding fauna’, ‘temporary or permanently attached surface dwelling or shallowly buried larger bivalves’ and ‘small mobile epifauna and tube dwelling crustaceans’. Each sub-model is accompanied by an associated confidence model which presents confidence in the links between each model component. The models are split into seven levels and take spatial and temporal scale into account through their design, as well as magnitude and direction of influence. The seven levels include regional to global drivers, water column processes, local inputs/processes at the seabed, habitat and biological assemblage, output processes, local ecosystem functions, and regional to global ecosystem functions. The models indicate that whilst the high level drivers which affect each functional group are largely similar, the output processes performed by the biota and the resulting ecosystem functions vary both in number and importance between groups. Confidence within the models as a whole is generally high, reflecting the level of information gathered during the literature review. Important drivers which influence the ecosystem include factors such as wave exposure, depth, water currents, climate and propagule supply. These factors, in combination with seabed and water column processes such as primary production, seabed mobility, suspended sediments, water chemistry and temperature and recruitment define and Conceptual Ecological Modelling of Shallow Sublittoral Mixed Sediment Habitats influence the biological assemblages. In addition, the habitat sediment type plays an important factor in shaping the biology of the habitat. Output processes are variable between functional faunal groups depending on the fauna present. Important processes include secondary production, biodeposition, bioturbation, bioengineering and the supply of propagules. These influence ecosystem functions at the local scale such as nutrient and biogeochemical cycling, supply of food resources, sediment stability, habitat provision and in some cases microbial activity. The export of biodiversity and organic matter, biodiversity enhancement and biotope stability are the resulting ecosystem functions which occur at the regional to global scale. Features within the models which are most useful for monitoring habitat status and change due to natural variation have been identified using the information gathered during the literature review, through interpretation of the models and through the application of expert judgement. Features within the models which may be useful for monitoring to identify anthropogenic causes of change within the ecosystem have also been identified. Physical and biological features of the ecosystem have mostly been identified as potential indicators to monitor natural variation, whilst physical features and output processes have predominantly been identified as most likely to indicate change due to anthropogenic pressures

    Does the continuum theory of dynamic fracture work?

    Full text link
    We investigate the validity of the Linear Elastic Fracture Mechanics approach to dynamic fracture. We first test the predictions in a lattice simulation, using a formula of Eshelby for the time-dependent Stress Intensity Factor. Excellent agreement with the theory is found. We then use the same method to analyze the experiment of Sharon and Fineberg. The data here is not consistent with the theoretical expectation.Comment: 4 page

    Spin dynamics of Mn12-acetate in the thermally-activated tunneling regime: ac-susceptibility and magnetization relaxation

    Full text link
    In this work, we study the spin dynamics of Mn12-acetate molecules in the regime of thermally assisted tunneling. In particular, we describe the system in the presence of a strong transverse magnetic field. Similar to recent experiments, the relaxation time/rate is found to display a series of resonances; their Lorentzian shape is found to stem from the tunneling. The dynamic susceptibility χ(w)\chi(w) is calculated starting from the microscopic Hamiltonian and the resonant structure manifests itself also in χ(w)\chi(w). Similar to recent results reported on another molecular magnet, Fe8, we find oscillations of the relaxation rate as a function of the transverse magnetic field when the field is directed along a hard axis of the molecules. This phenomenon is attributed to the interference of the geometrical or Berry phase. We propose susceptibility experiments to be carried out for strong transverse magnetic fields to study of these oscillations and for a better resolution of the sharp satellite peaks in the relaxation rates.Comment: 22 pages, 23 figures; submitted to Phys. Rev. B; citations/references adde

    Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector

    Get PDF
    Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb−1. The vm−vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ε2 and ε3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm−vn correlations for n=4 and 5 are found to disagree with εm−εn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    Search for vectorlike B quarks in events with one isolated lepton, missing transverse momentum, and jets at √s = 8 TeV with the ATLAS detector

    Get PDF
    A search has been performed for pair production of heavy vectorlike down-type (B) quarks. The analysis explores the lepton-plus-jets final state, characterized by events with one isolated charged lepton (electron or muon), significant missing transverse momentum, and multiple jets. One or more jets are required to be tagged as arising from b quarks, and at least one pair of jets must be tagged as arising from the hadronic decay of an electroweak boson. The analysis uses the full data sample of pp collisions recorded in 2012 by the ATLAS detector at the LHC, operating at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 20.3 fb −1 . No significant excess of events is observed above the expected background. Limits are set on vectorlike B production, as a function of the B branching ratios, assuming the allowable decay modes are B → Wt/Zb/Hb. In the chiral limit with a branching ratio of 100% for the decay B → Wt, the observed (expected) 95% C.L. lower limit on the vectorlike B mass is 810 GeV (760 GeV). In the case where the vectorlike B quark has branching ratio values corresponding to those of an SU(2) singlet state, the observed (expected) 95% C.L. lower limit on the vectorlike B mass is 640 GeV (505 GeV). The same analysis, when used to investigate pair production of a colored, charge 5/3 exotic fermion T 5/3 , with subsequent decay T 5/3 → Wt, sets an observed (expected) 95% C.L. lower limit on the T 5/3 mass of 840 GeV (780 GeV)

    Search for W′→tb→qqbb decays in pp collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    A search for a massive W′ gauge boson decaying to a top quark and a bottom quark is performed with the ATLAS detector in pp collisions at the LHC. The dataset was taken at a centre-of-mass energy of √s=8 TeV and corresponds to 20.3 fb−1 of integrated luminosity. This analysis is done in the hadronic decay mode of the top quark, where novel jet substructure techniques are used to identify jets from high-momentum top quarks. This allows for a search for high-mass W′ bosons in the range 1.5–3.0 TeV. b-tagging is used to identify jets originating from b-quarks. The data are consistent with Standard Model background-only expectations, and upper limits at 95 % confidence level are set on the W′→tb cross section times branching ratio ranging from 0.16pb to 0.33pb for left-handed W′ bosons, and ranging from 0.10pb to 0.21pb for W′ bosons with purely right-handed couplings. Upper limits at 95 % confidence level are set on the W′-boson coupling to tb as a function of the W′ mass using an effective field theory approach, which is independent of details of particular models predicting a W′boson

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance
    corecore