1,128 research outputs found

    Statistische Untersuchungen zum schwachen kosmologischen Gravitationslinseneffekt

    Get PDF

    The non-Gaussian tail of cosmic-shear statistics

    Get PDF
    Due to gravitational instability, an initially Gaussian density field develops non-Gaussian features as the Universe evolves. The most prominent non-Gaussian features are massive haloes, visible as clusters of galaxies. The distortion of high-redshift galaxy images due to the tidal gravitational field of the large-scale matter distribution, called cosmic shear, can be used to investigate the statistical properties of the LSS. In particular, non-Gaussian properties of the LSS will lead to a non-Gaussian distribution of cosmic-shear statistics. The aperture mass (MapM_{\rm ap}) statistics, recently introduced as a measure for cosmic shear, is particularly well suited for measuring these non-Gaussian properties. In this paper we calculate the highly non-Gaussian tail of the aperture mass probability distribution, assuming Press-Schechter theory for the halo abundance and the `universal' density profile of haloes as obtained from numerical simulations. We find that for values of MapM_{\rm ap} much larger than its dispersion, this probability distribution is closely approximated by an exponential, rather than a Gaussian. We determine the amplitude and shape of this exponential for various cosmological models and aperture sizes, and show that wide-field imaging surveys can be used to distinguish between some of the currently most popular cosmogonies. Our study here is complementary to earlier cosmic-shear investigations which focussed more on two-point statistical properties.Comment: 9 pages, 5 figures, submitted to MNRA

    Statistics of dark matter haloes expected from weak lensing surveys

    Get PDF
    The distortion of the images of faint high-redshift galaxies can be used to probe the intervening mass distribution. This weak gravitational lensing effect has been used recently to study the (projected) mass distribution of several clusters at intermediate and high redshifts. In addition, the weak lensing effect can be employed to detect (dark) matter concentrations in the Universe, based on their mass properties alone. Thus it is feasible to obtain a mass-selected sample of `clusters', and thereby probe the full range of their mass-to-light ratios. We study the expected number density of such haloes which can be detected in ongoing and future deep wide-field imaging surveys, using the number density of haloes as predicted by the Press-Schechter theory, and modeling their mass profile by the `universal' density profile found by Navarro, Frenk & White. We find that in all cosmological models considered, the number density of haloes with a signal-to-noise ratio larger than 5 exceeds 10 per square degree. With the planned MEGACAM imaging survey of 25deg2\sim 25 deg^2, it will be easily possible to distinguish between the most commonly discussed cosmological parameter sets.Comment: 8 pages, 7 figures, submitted to MNRA

    Comparison of the α and β isomeric forms of the detergent n-dodecyl-D-maltoside for solubilizing photosynthetic complexes from pea thylakoid membranes

    Get PDF
    AbstractMild non-ionic detergents are indispensable in the isolation of intact integral membrane proteins and protein-complexes from biological membranes. Dodecylmaltoside (DM) belongs to this class of detergents being a glucoside-based surfactant with a bulky hydrophilic head group composed of two sugar rings and a non-charged alkyl glycoside chain. Two isomers of this molecule exist, differing only in the configuration of the alkyl chain around the anomeric center of the carbohydrate head group, axial in α-DM and equatorial in β-DM. In this paper, we have investigated the solubilizing properties of α-DM and β-DM on the isolation of photosynthetic complexes from pea thylakoids membranes maintaining their native architecture of stacked grana and stroma lamellae. Exposure of these stacked thylakoids to a single step treatment with increasing concentrations (5–100mM) of α-DM or β-DM resulted in a quick partial or complete solubilization of the membranes. Regardless of the isomeric form used: 1) at the lowest DM concentrations only a partial solubilization of thylakoids was achieved, giving rise to the release of mainly small protein complexes mixed with membrane fragments enriched in PSI from stroma lamellae; 2) at concentrations above 30mM a complete solubilization occurred with the further release of high molecular weight protein complexes identified as dimeric PSII, PSI-LHCI and PSII–LHCII supercomplexes. However, at concentrations of detergent which fully solubilized the thylakoids, the α and β isomeric forms of DM exerted a somewhat different solubilizing effect on the membranes: higher abundance of larger sized PSII–LHCII supercomplexes retaining a higher proportion of LHCII and lower amounts of PSI–LHCI intermediates were observed in α-DM treated membranes, reflecting the mildness of α-DM compared with its isomer. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial

    Proteome-wide analysis reveals an age-associated cellular phenotype of in situ aged human fibroblasts

    Get PDF
    We analyzed an ex vivo model of in situ aged human dermal fibroblasts, obtained from 15 adult healthy donors from three different age groups using an unbiased quantitative proteome-wide approach applying label-free mass spectrometry. Thereby, we identified 2409 proteins, including 43 proteins with an age-associated abundance change. Most of the differentially abundant proteins have not been described in the context of fibroblasts' aging before, but the deduced biological processes confirmed known hallmarks of aging and led to a consistent picture of eight biological categories involved in fibroblast aging, namely proteostasis, cell cycle and proliferation, development and differentiation, cell death, cell organization and cytoskeleton, response to stress, cell communication and signal transduction, as well as RNA metabolism and translation. The exhaustive analysis of protein and mRNA data revealed that 77 % of the age-associated proteins were not linked to expression changes of the corresponding transcripts. This is in line with an associated miRNA study and led us to the conclusion that most of the age-associated alterations detected at the proteome level are likely caused post-transcriptionally rather than by differential gene expression. In summary, our findings led to the characterization of novel proteins potentially associated with fibroblast aging and revealed that primary cultures of in situ aged fibroblasts are characterized by moderate age-related proteomic changes comprising the multifactorial process of aging

    Good Computational Practice in the Assignment of Absolute Configurations by TDDFT Calculations of ECD Spectra

    Get PDF
    Quantum-mechanical calculations of chiroptical properties have rapidly become the most popular method for assigning absolute configurations (AC) of organic compounds, including natural products. Black-box time-dependent Density Functional Theory (TDDFT) calculations of electronic circular dichroism (ECD) spectra are nowadays readily accessible to nonexperts. However, an uncritical attitude may easily deliver a wrong answer. We present to the Chirality Forum a discussion on what can be called good computational practice in running TDDFT ECD calculations, highlighting the most crucial points with several examples from the recent literature

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations
    corecore