45 research outputs found

    Epigenetic regulation of adaptive responses of forest tree species to the environment

    Get PDF
    Epigenetic variation is likely to contribute to the phenotypic plasticity and adaptative capacity of plant species, and may be especially important for long-lived organisms with complex life cycles, including forest trees. Diverse environmental stresses and hybridization/polyploidization events can create reversible heritable epigenetic marks that can be transmitted to subsequent generations as a form of molecular “memory”. Epigenetic changes might also contribute to the ability of plants to colonize or persist in variable environments. In this review, we provide an overview of recent data on epigenetic mechanisms involved in developmental processes and responses to environmental cues in plant, with a focus on forest tree species. We consider the possible role of forest tree epigenetics as a new source of adaptive traits in plant breeding, biotechnology, and ecosystem conservation under rapid climate chang

    Phylogenetic Study of Plant Q-type C2H2 Zinc Finger Proteins and Expression Analysis of Poplar Genes in Response to Osmotic, Cold and Mechanical Stresses

    Get PDF
    Plant Q-type C2H2 zinc finger transcription factors play an important role in plant tolerance to various environmental stresses such as drought, cold, osmotic stress, wounding and mechanical loading. To carry out an improved analysis of the specific role of each member of this subfamily in response to mechanical loading in poplar, we identified 16 two-fingered Q-type C2H2-predicted proteins from the poplar Phytozome database and compared their phylogenetic relationships with 152 two-fingered Q-type C2H2 protein sequences belonging to more than 50 species isolated from the NR protein database of NCBI. Phylogenetic analyses of these Q-type C2H2 proteins sequences classified them into two groups G1 and G2, and conserved motif distributions of interest were established. These two groups differed essentially in their signatures at the C-terminus of their two QALGGH DNA-binding domains. Two additional conserved motifs, MALEAL and LVDCHY, were found only in sequences from Group G1 or from Group G2, respectively. Functional significance of these phylogenetic divergences was assessed by studying transcript accumulation of six poplar C2H2 Q-type genes in responses to abiotic stresses; but no group specificity was found in any organ. Further expression analyses focused on PtaZFP1 and PtaZFP2, the two genes strongly induced by mechanical loading in poplars. The results revealed that these two genes were regulated by several signalling molecules including hydrogen peroxide and the phytohormone jasmonate

    The zinc finger protein PtaZFP2 negatively controls stem growth and gene expression responsiveness to external mechanical loads in poplar

    Get PDF
    Mechanical cues are essential signals regulating plant growth and development. In response to wind, trees develop a thigmomorphogenetic response characterized by a reduction in longitudinal growth, an increase in diameter growth, and changes in mechanical properties. The molecular mechanisms behind these processes are poorly understood. In poplar, PtaZFP2, a C2H2 transcription factor, is rapidly up-regulated after stem bending. To investigate the function of PtaZFP2, we analyzed PtaZFP2-overexpressing poplars (Populus tremula 9 Populus alba). To unravel the genes downstream PtaZFP2, a transcriptomic analysis was performed. PtaZFP2-overexpressing poplars showed longitudinal and cambial growth reductions together with an increase in the tangent and hardening plastic moduli. The regulation level of mechanoresponsive genes was much weaker after stem bending in PtaZFP2-overexpressing poplars than in wild-type plants, showing that PtaZFP2 negatively modulates plant responsiveness to mechanical stimulation. Microarray analysis revealed a high proportion of down-regulated genes in PtaZFP2-overexpressing poplars. Among these genes, several were also shown to be regulated by mechanical stimulation. Our results confirmed the important role of PtaZFP2 during plant acclimation to mechanical load, in particular through a negative control of plant molecular responsiveness. This desensitization process could modulate the amplitude and duration of the plant response during recurrent stimuli

    Epi-fingerprinting and epi-interventions for improved crop production and food quality

    Get PDF
    Increasing crop production at a time of rapid climate change represents the greatest challenge facing contemporary agricultural research. Our understanding of the genetic control of yield derives from controlled field experiments designed to minimise environmental variance. In spite of these efforts there is substantial residual variability among plants attributable to Genotype x Environment (GxE) interactions. Recent advances in the field of epigenetics have revealed a plethora of gene control mechanisms that could account for much of this unassigned variation. These systems act as a regulatory interface between the perception of the environment and associated alterations in gene expression. Direct intervention of epigenetic control systems hold the enticing promise of creating new sources of variability that could enhance crop performance. Equally, understanding the relationship between various epigenetic states and responses of the crop to specific aspects of the growing environment (epigenetic fingerprinting) could allow for a more tailored approach to plant agronomy. In this review, we explore the many ways in which epigenetic interventions and epigenetic fingerprinting can be deployed for the improvement of crop production and quality

    Chromatin dynamics during interphase and cell division:similarities and differences between model and crop plants

    Get PDF
    Genetic information in the cell nucleus controls organismal development, responses to the environment and finally ensures own transmission to the next generations. To achieve so many different tasks, the genetic information is associated with structural and regulatory proteins, which orchestrate nuclear functions in time and space. Furthermore, plant life strategies require chromatin plasticity to allow a rapid adaptation to abiotic and biotic stresses. Here, we summarize current knowledge on the organisation of plant chromatin and dynamics of chromosomes during interphase and mitotic and meiotic cell divisions for model and crop plants differing as to the genome size, ploidy and amount of genomic resources available. The existing data indicate that chromatin changes accompany most (if not all) cellular processes and that there are both shared and unique themes in the chromatin structure and global chromosome dynamics among species. Ongoing efforts to understand the molecular mechanisms involved in chromatin organisation and remodeling have, together with the latest genome editing tools, potential to unlock crop genomes for innovative breeding strategies and improvements of various traits

    Study of the early stages of mechanoperception in poplar

    No full text
    Afin de survivre dans un environnement fluctuant, les plantes ont développé la capacité de percevoir et de répondre à des stimuli externes divers et parfois extrêmes. Les sollicitations mécaniques jouent un rôle important au cours du développement des plantes et un nombre croissant d’études s’intéresse à la mécanoperception. Le dessin de la voie de signalisation entre la perception du signal et la régulation des gènes précoces reste incertain. Un modèle de la mécanoperception, proposant que la variable mécanoperçue soit la déformation de la membrane, a été vérifié à l’échelle de la plante entière mais doit être validé au niveau cellulaire. Pour cela, et afin d’identifier les acteurs moléculaires précoces de la réponse à la sollicitation mécanique, nous avons analysé la régulation du gène mécanosensible PtaZFP2 sur cultures cellulaires de peuplier. Le gène PtaZFP2 appartient à la famille multigénique des Q-type C2H2-ZFPs codant des facteurs de transcription putatifs et comprenant 16 membres chez le peuplier. Une analyse phylogénétique et l’analyse de l’expression de ces gènes en réponse à différents stress abiotiques ont montré l’existence de deux groupes phylogénétiques. Ils se différencient par des doigts de zinc caractéristiques et deux nouveaux motifs protéiques (MALEAL et LVDCHY) spécifiques à chacun des groupes. Cette étude nous a également permis d’identifier un autre gène, PtaZFP1, proche phylogénétiquement de PtaZFP2 et fortement induit par une flexion. Après avoir mis au point un système de sollicitation mécanique sur cultures cellulaires, nous avons démontré l’implication du calcium, des calmodulines, des jasmonates et du H2O2 dans l’induction précoce du gène PtaZFP2 par un signal mécanique. Nos travaux suggèrent également l’existence d’une interaction entre la NADPH oxydase (enzyme impliquée dans la production d’EAO) et les calmodulines en amont de PtaZFP2. Finalement, des résultats préliminaires suggèrent une localisation nucléaire de cette protéine et une accumulation transitoire au sein des tiges 2h après une flexion. Les outils moléculaires produits au cours de ce travail (anticorps, protéines recombinantes) permettront de comprendre le rôle de PtaZFP2 dans cette voie de signalisation.The ability of plants to perceive and respond to various and even extreme environmental stimuli is crucial for their survival in a fluctuant environment. Mechanical solicitations play a key role during plant development and an increasing number of studies are dedicated to mechanosensing. The way how plants sense mechanical signals and bring about the changes in gene expression is still unknown. Recently, a model of mechanosensing, suggesting that the physical variable perceived by cells is the plasma membrane strain, has been confirmed at the whole plant scale but remains to be validated at the cellular level. In this aim and to identify the molecular components involved in the early steps of the mechanical signaling pathway, the regulation of the mechanosensitive gene PtaZFP2 was analyzed in poplar cells cultures. The mechanosensitive PtaZFP2 gene belongs to the multigenic Q -type C2H2 -ZFPs family encoding putative transcription factors, consisting of 16 members in poplar. A phylogenetic study and the expression analysis of several of these genes in response to abiotic stresses, allowed us to detect two phylogenetic groups. These two groups are distinguished essentially on their different signatures of their two zinc finger domains and on the two additional conserved motifs MALEAL and LVDCHY, specific to each phylogenetic group. Another gene of the Q -type C2H2 -ZFP family, PtaZFP1, related to PtaZFP2, was shown to be regulated by bending. After several adjustments to apply a mechanical solicitation to cells cultures, such treatments revealed the involvement of calcium, calmodulins, jasmonic acid and H2O2 in the rapid induction of PtaZFP2 gene expression in response to mechanical stress. Furthermore, our data showed an interaction between an NADPH oxidase enzyme (involved in ROS production) and calmodulins upstream of PtaZFP2. Finally, preliminary results suggested a nuclear localization of PtaZFP2 and a transient accumulation of this protein in the stem 2 hours after bending. The molecular tools that have been produced during this work (antibody, recombinant protein) will be used to study the role of PtaZFP2 in the mechanical signaling pathway

    Etude des étapes précoces de la mécanoperception chez le peuplier

    Get PDF
    The ability of plants to perceive and respond to various and even extreme environmental stimuli is crucial for their survival in a fluctuant environment. Mechanical solicitations play a key role during plant development and an increasing number of studies are dedicated to mechanosensing. The way how plants sense mechanical signals and bring about the changes in gene expression is still unknown. Recently, a model of mechanosensing, suggesting that the physical variable perceived by cells is the plasma membrane strain, has been confirmed at the whole plant scale but remains to be validated at the cellular level. In this aim and to identify the molecular components involved in the early steps of the mechanical signaling pathway, the regulation of the mechanosensitive gene PtaZFP2 was analyzed in poplar cells cultures. The mechanosensitive PtaZFP2 gene belongs to the multigenic Q -type C2H2 -ZFPs family encoding putative transcription factors, consisting of 16 members in poplar. A phylogenetic study and the expression analysis of several of these genes in response to abiotic stresses, allowed us to detect two phylogenetic groups. These two groups are distinguished essentially on their different signatures of their two zinc finger domains and on the two additional conserved motifs MALEAL and LVDCHY, specific to each phylogenetic group. Another gene of the Q -type C2H2 -ZFP family, PtaZFP1, related to PtaZFP2, was shown to be regulated by bending. After several adjustments to apply a mechanical solicitation to cells cultures, such treatments revealed the involvement of calcium, calmodulins, jasmonic acid and H2O2 in the rapid induction of PtaZFP2 gene expression in response to mechanical stress. Furthermore, our data showed an interaction between an NADPH oxidase enzyme (involved in ROS production) and calmodulins upstream of PtaZFP2. Finally, preliminary results suggested a nuclear localization of PtaZFP2 and a transient accumulation of this protein in the stem 2 hours after bending. The molecular tools that have been produced during this work (antibody, recombinant protein) will be used to study the role of PtaZFP2 in the mechanical signaling pathway.Afin de survivre dans un environnement fluctuant, les plantes ont développé la capacité de percevoir et de répondre à des stimuli externes divers et parfois extrêmes. Les sollicitations mécaniques jouent un rôle important au cours du développement des plantes et un nombre croissant d’études s’intéresse à la mécanoperception. Le dessin de la voie de signalisation entre la perception du signal et la régulation des gènes précoces reste incertain. Un modèle de la mécanoperception, proposant que la variable mécanoperçue soit la déformation de la membrane, a été vérifié à l’échelle de la plante entière mais doit être validé au niveau cellulaire. Pour cela, et afin d’identifier les acteurs moléculaires précoces de la réponse à la sollicitation mécanique, nous avons analysé la régulation du gène mécanosensible PtaZFP2 sur cultures cellulaires de peuplier. Le gène PtaZFP2 appartient à la famille multigénique des Q-type C2H2-ZFPs codant des facteurs de transcription putatifs et comprenant 16 membres chez le peuplier. Une analyse phylogénétique et l’analyse de l’expression de ces gènes en réponse à différents stress abiotiques ont montré l’existence de deux groupes phylogénétiques. Ils se différencient par des doigts de zinc caractéristiques et deux nouveaux motifs protéiques (MALEAL et LVDCHY) spécifiques à chacun des groupes. Cette étude nous a également permis d’identifier un autre gène, PtaZFP1, proche phylogénétiquement de PtaZFP2 et fortement induit par une flexion. Après avoir mis au point un système de sollicitation mécanique sur cultures cellulaires, nous avons démontré l’implication du calcium, des calmodulines, des jasmonates et du H2O2 dans l’induction précoce du gène PtaZFP2 par un signal mécanique. Nos travaux suggèrent également l’existence d’une interaction entre la NADPH oxydase (enzyme impliquée dans la production d’EAO) et les calmodulines en amont de PtaZFP2. Finalement, des résultats préliminaires suggèrent une localisation nucléaire de cette protéine et une accumulation transitoire au sein des tiges 2h après une flexion. Les outils moléculaires produits au cours de ce travail (anticorps, protéines recombinantes) permettront de comprendre le rôle de PtaZFP2 dans cette voie de signalisation

    Etude des étapes précoces de la mécanoperception chez le peuplier

    No full text
    Afin de survivre dans un environnement fluctuant, les plantes ont développé la capacité de percevoir et de répondre à des stimuli externes divers et parfois extrêmes. Les sollicitations mécaniques jouent un rôle important au cours du développement des plantes et un nombre croissant d études s intéresse à la mécanoperception. Le dessin de la voie de signalisation entre la perception du signal et la régulation des gènes précoces reste incertain. Un modèle de la mécanoperception, proposant que la variable mécanoperçue soit la déformation de la membrane, a été vérifié à l échelle de la plante entière mais doit être validé au niveau cellulaire. Pour cela, et afin d identifier les acteurs moléculaires précoces de la réponse à la sollicitation mécanique, nous avons analysé la régulation du gène mécanosensible PtaZFP2 sur cultures cellulaires de peuplier. Le gène PtaZFP2 appartient à la famille multigénique des Q-type C2H2-ZFPs codant des facteurs de transcription putatifs et comprenant 16 membres chez le peuplier. Une analyse phylogénétique et l analyse de l expression de ces gènes en réponse à différents stress abiotiques ont montré l existence de deux groupes phylogénétiques. Ils se différencient par des doigts de zinc caractéristiques et deux nouveaux motifs protéiques (MALEAL et LVDCHY) spécifiques à chacun des groupes. Cette étude nous a également permis d identifier un autre gène, PtaZFP1, proche phylogénétiquement de PtaZFP2 et fortement induit par une flexion. Après avoir mis au point un système de sollicitation mécanique sur cultures cellulaires, nous avons démontré l implication du calcium, des calmodulines, des jasmonates et du H2O2 dans l induction précoce du gène PtaZFP2 par un signal mécanique. Nos travaux suggèrent également l existence d une interaction entre la NADPH oxydase (enzyme impliquée dans la production d EAO) et les calmodulines en amont de PtaZFP2. Finalement, des résultats préliminaires suggèrent une localisation nucléaire de cette protéine et une accumulation transitoire au sein des tiges 2h après une flexion. Les outils moléculaires produits au cours de ce travail (anticorps, protéines recombinantes) permettront de comprendre le rôle de PtaZFP2 dans cette voie de signalisation.The ability of plants to perceive and respond to various and even extreme environmental stimuli is crucial for their survival in a fluctuant environment. Mechanical solicitations play a key role during plant development and an increasing number of studies are dedicated to mechanosensing. The way how plants sense mechanical signals and bring about the changes in gene expression is still unknown. Recently, a model of mechanosensing, suggesting that the physical variable perceived by cells is the plasma membrane strain, has been confirmed at the whole plant scale but remains to be validated at the cellular level. In this aim and to identify the molecular components involved in the early steps of the mechanical signaling pathway, the regulation of the mechanosensitive gene PtaZFP2 was analyzed in poplar cells cultures. The mechanosensitive PtaZFP2 gene belongs to the multigenic Q -type C2H2 -ZFPs family encoding putative transcription factors, consisting of 16 members in poplar. A phylogenetic study and the expression analysis of several of these genes in response to abiotic stresses, allowed us to detect two phylogenetic groups. These two groups are distinguished essentially on their different signatures of their two zinc finger domains and on the two additional conserved motifs MALEAL and LVDCHY, specific to each phylogenetic group. Another gene of the Q -type C2H2 -ZFP family, PtaZFP1, related to PtaZFP2, was shown to be regulated by bending. After several adjustments to apply a mechanical solicitation to cells cultures, such treatments revealed the involvement of calcium, calmodulins, jasmonic acid and H2O2 in the rapid induction of PtaZFP2 gene expression in response to mechanical stress. Furthermore, our data showed an interaction between an NADPH oxidase enzyme (involved in ROS production) and calmodulins upstream of PtaZFP2. Finally, preliminary results suggested a nuclear localization of PtaZFP2 and a transient accumulation of this protein in the stem 2 hours after bending. The molecular tools that have been produced during this work (antibody, recombinant protein) will be used to study the role of PtaZFP2 in the mechanical signaling pathway.CLERMONT FD-Bib.électronique (631139902) / SudocSudocFranceF
    corecore