52 research outputs found

    Breadstick fortification with red grape pomace: effect on nutritional, technological and sensory properties

    Get PDF
    BACKGROUND: Grape pomace (GP), a wine-making by-product rich in dietary fiber (DF) and total phenolic compounds (TPC), is a potential functional ingredient in the fortification of baked goods. RESULTS: In the present study, fortified breadsticks samples were obtained by replacing wheat flour with 0, 5 and 10 g 100 g−1 of powdered GP (GPP). The GPP inclusion affected the rheological properties of the doughs by increasing the water absorption and tenacity (P) at the same time as reducing the extensibility (L), with a significant increase in the P/L value and a decrease in the swelling index (G) value and deformation energy (W). Textural characteristics of breadsticks were influenced by the GPP addition, showing a reduction in hardness and fracturability as the amount of GPP increased in the recipe. The GPP fortified breadsticks exhibited decreased pH, volume and specific volume values compared to the control. The TPC and the antioxidant capacity increased in GPP fortified breadsticks, whereas the increased amount of DF allowed the products to benefit from the claim ‘high fiber content’ at the highest level of GPP inclusion. The sensory evaluation revealed that GPP addition increased wine odor, acidity, bitterness, astringency and hardness, and decreased the regularity of alveolation and friability. Finally, the GPP fortified products achieved good sensorial acceptability. CONCLUSION: GPP improved the nutritional values of fortified breadsticks and changed the rheology of dough and breadsticks' technological properties without affecting sensory acceptability

    Wheat Bread Fortification by Grape Pomace Powder: Nutritional, Technological, Antioxidant, and Sensory Properties.

    Get PDF
    Grape pomace powder (GPP), a by-product from the winemaking process, was used to substitute flour for wheat bread fortification within 0, 5, and 10 g/100 g. Rheological properties of control and fortified doughs, along with physicochemical and nutritional characteristics, antioxidant activity, and the sensory analysis of the obtained bread were considered. The GPP addition influenced the doughs' rheological properties by generating more tenacious and less extensible products. Concerning bread, pH values and volume of fortified products decreased as the GPP inclusion level increased in the recipe. Total phenolic compounds and the antioxidant capacity of bread samples, evaluated by FRAP (ferric reducing ability of plasma) and ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) assays, increased with GPP addition. Moreover, the GPP inclusion level raised the total dietary fiber content of bread. Regarding sensory evaluation, GPP fortification had a major impact on the acidity, the global flavor, the astringency, and the wine smell of bread samples without affecting the overall bread acceptability. The current results suggest that GPP could be an attractive ingredient used to obtain fortified bread, as it is a source of fiber and polyphenols with potentially positive effects on human health

    Impact of Grape Pomace Powder on the Phenolic Bioaccessibility and on In Vitro Starch Digestibility of Wheat Based Bread

    Get PDF
    Breads were prepared by substituting common wheat flour with 0 (GP0), 5 (GP5) and 10 (GP10) g/100 g (w/w) of grape pomace powder (GPP) and were analyzed for the phenolic profile bioaccessibility as well as the in vitro starch digestion during simulated digestion. The free and bound phenolic composition of native GPP and resulting breads were profiled using ultrahigh- performance chromatography-quadrupole-time-of-flight (UHPLC-QTOF). The raw GPP was characterized by 190 polyphenols with the anthocyanins representing the most abundant class, accounting for 11.60 mg/g of cyanidin equivalents. Regarding the fortified bread, the greatest (p < 0.05) content in phenolic compounds was recorded for the GP10 sample (considering both bound and free fractions) being 127.76 mg/100 g dry matter (DM), followed by the GP5 (106.96 mg/100 g DM), and GP0 (63.76 mg/100 g DM). The use of GPP determined an increase of anthocyanins (considered the markers of the GPP inclusion), recording 20.98 mg/100 g DM in GP5 and 35.82 mg/100 g DM in GP10. The bioaccessibility of anthocyanins increased in both GP5 and GP10 breads when moving from the gastric to the small intestine in vitro digestion phase with an average value of 24%. Both the starch hydrolysis and the predicted glycemic index decreased with the progressive inclusion of GPP in bread. Present findings showed that GPP in bread could promote an antioxidant environment in the digestive tract and influence the in vitro starch digestion

    Red blood cells membrane micropolarity as a novel diagnostic indicator of type 1 and type 2 diabetes

    Get PDF
    Classification of the category of diabetes is extremely important for clinicians to diagnose and select the correct treatment plan. Glycosylation, oxidation and other post-translational modifications of membrane and transmembrane proteins, as well as impairment in cholesterol homeostasis, can alter lipid density, packing, and interactions of Red blood cells (RBC) plasma membranes in type 1 and type 2 diabetes, thus varying their membrane micropolarity. This can be estimated, at a submicrometric scale, by determining the membrane relative permittivity, which is the factor by which the electric field between the charges is decreased relative to vacuum. Here, we employed a membrane micropolarity sensitive probe to monitor variations in red blood cells of healthy subjects (n=16) and patients affected by type 1 (T1DM, n=10) and type 2 diabetes mellitus (T2DM, n=24) to provide a cost-effective and supplementary indicator for diabetes classification. We find a less polar membrane microenvironment in T2DM patients, and a more polar membrane microenvironment in T1DM patients compared to control healthy patients. The differences in micropolarity are statistically significant among the three groups (p<0.01). The role of serum cholesterol pool in determining these differences was investigated, and other factors potentially altering the response of the probe were considered in view of developing a clinical assay based on RBC membrane micropolarity. These preliminary data pave the way for the development of an innovative assay which could become a tool for diagnosis and progression monitoring of type 1 and type 2 diabetes. Keywords: Diabetes mellitus, Membrane micropolarity, Red blood cells, Fluorescence lifetime microscopy, Metabolic imaging, Personalized medicin

    NEPA, a fixed oral combination of netupitant and palonosetron, improves control of chemotherapy-induced nausea and vomiting (CINV) over multiple cycles of chemotherapy: results of a randomized, double-blind, phase 3 trial versus oral palonosetron

    Get PDF
    Purpose Antiemetic guidelines recommend co-administration of targeted prophylactic medications inhibiting molecular pathways involved in emesis. NEPA is a fixed oral combination of a new NK1 receptor antagonist (RA), netupitant (NETU 300 mg), and palonosetron (PALO 0.50 mg), a pharmacologically distinct 5-HT3 RA. NEPA showed superior prevention of chemotherapy-induced nausea and vomiting (CINV) compared with oral PALO in a single chemotherapy cycle; maintenance of efficacy/safety over continuing cycles is the objective of this study. Methods This study is a multinational, double-blind study comparing a single oral dose of NEPA vs oral PALO in chemotherapy-naïve patients receiving anthracycline/ cyclophosphamide-based chemotherapy along with dexamethasone 12 mg (NEPA) or 20 mg (PALO) on day 1. The primary efficacy endpoint was delayed (25–120 h) complete response (CR: no emesis, no rescue medication) in cycle 1. Sustained efficacy was evaluated during the multicycle extension by calculating the proportion of patients with overall (0–120 h) CR in cycles 2–4 and by assessing the probability of sustained CR over multiple cycles. Results Of 1455 patients randomized, 1286 (88 %) participated in the multiple-cycle extension for a total of 5969 cycles; 76 % completed ≥4 cycles. The proportion of patients with an overall CR was significantly greater for NEPA than oral PALO for cycles 1–4 (74.3 vs 66.6 %, 80.3 vs 66.7 %, 83.8 vs 70.3 %, and 83.8 vs 74.6 %, respectively; p ≤ 0.001 each cycle). The cumulative percentage of patients with a sustained CR over all 4 cycles was also greater for NEPA (p < 0.0001). NEPA was well tolerated over cycles. Conclusions NEPA, a convenient, guideline-consistent, fixed antiemetic combination is effective and safe over multiple cycles of chemotherapy

    An explainable model of host genetic interactions linked to COVID-19 severity

    Get PDF
    We employed a multifaceted computational strategy to identify the genetic factors contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing (WES) dataset of a cohort of 2000 Italian patients. We coupled a stratified k-fold screening, to rank variants more associated with severity, with the training of multiple supervised classifiers, to predict severity based on screened features. Feature importance analysis from tree-based models allowed us to identify 16 variants with the highest support which, together with age and gender covariates, were found to be most predictive of COVID-19 severity. When tested on a follow-up cohort, our ensemble of models predicted severity with high accuracy (ACC = 81.88%; AUCROC = 96%; MCC = 61.55%). Our model recapitulated a vast literature of emerging molecular mechanisms and genetic factors linked to COVID-19 response and extends previous landmark Genome-Wide Association Studies (GWAS). It revealed a network of interplaying genetic signatures converging on established immune system and inflammatory processes linked to viral infection response. It also identified additional processes cross-talking with immune pathways, such as GPCR signaling, which might offer additional opportunities for therapeutic intervention and patient stratification. Publicly available PheWAS datasets revealed that several variants were significantly associated with phenotypic traits such as "Respiratory or thoracic disease", supporting their link with COVID-19 severity outcome.A multifaceted computational strategy identifies 16 genetic variants contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing dataset of a cohort of Italian patients

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe
    corecore