95 research outputs found

    A new diagnostic algorithm for Burkitt and diffuse large B-cell lymphomas based on the expression of CSE1L and STAT3 and on MYC rearrangement predicts outcome

    Get PDF
    Background Aggressive mature B-cell non-Hodgkin's lymphomas (BCL) sharing features of Burkitt's lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL) (intermediate BL/DLBCL) but deviating with respect to one or more characteristics are increasingly recognized. The limited knowledge about these biologically heterogeneous lymphomas hampers their assignment to a known entity, raising incertitude about optimal treatment approaches. We therefore searched for discriminative, prognostic, and predictive factors for their better characterization. Patients and methods We analyzed 242 cytogenetically defined aggressive mature BCL for differential protein expression. Marker selection was based on recent gene-expression profile studies. Predictive models for diagnosis were established and validated by a different set of lymphomas. Results CSE1L- and inhibitor of DNA binding-3 (ID3)-overexpression was associated with the diagnosis of BL and signal transduction and transcription-3 (STAT3) with DLBCL (P<0.001 for all markers). All three markers were associated with patient outcome in DLBCL. A new algorithm discriminating BL from DLBCL emerged, including the expression of CSE1L, STAT3, and MYC translocation. This ‘new classifier' enabled the identification of patients with intermediate BL/DLBCL who benefited from intensive chemotherapy regimens. Conclusion The proposed algorithm, which is based on markers with reliable staining properties for routine diagnostics, represents a novel valid tool in separating BL from DLBCL. Most interestingly, it allows segregating intermediate BL/DLBCL into groups with different treatment requirement

    Subterranean, herbivore-induced plant volatile increases biological control activity of multiple beneficial nematode species in distinct habitats

    Get PDF
    While the role of herbivore-induced volatiles in plant-herbivore-natural enemy interactions is well documented aboveground, new evidence suggests that belowground volatile emissions can protect plants by attracting entomopathogenic nematodes (EPNs). However, due to methodological limitations, no study has previously detected belowground herbivore-induced volatiles in the field or quantified their impact on attraction of diverse EPN species. Here we show how a belowground herbivore-induced volatile can enhance mortality of agriculturally significant root pests. First, in real time, we identified pregeijerene (1,5-dimethylcyclodeca-1,5,7-triene) from citrus roots 9-12 hours after initiation of larval Diaprepes abbreviatus feeding. This compound was also detected in the root zone of mature citrus trees in the field. Application of collected volatiles from weevil-damaged citrus roots attracted native EPNs and increased mortality of beetle larvae (D. abbreviatus) compared to controls in a citrus orchard. In addition, field applications of isolated pregeijerene caused similar results. Quantitative real-time PCR revealed that pregeijerene increased pest mortality by attracting four species of naturally occurring EPNs in the field. Finally, we tested the generality of this root-zone signal by application of pregeijerene in blueberry fields; mortality of larvae (Galleria mellonella and Anomala orientalis) again increased by attracting naturally occurring populations of an EPN. Thus, this specific belowground signal attracts natural enemies of widespread root pests in distinct agricultural systems and may have broad potential in biological control of root pests.info:eu-repo/semantics/publishedVersio

    Insect pathogens as biological control agents: back to the future

    Get PDF
    The development and use of entomopathogens as classical, conservation and augmentative biological control agents have included a number of successes and some setbacks in the past 15 years. In this forum paper we present current information on development, use and future directions of insect-specific viruses, bacteria, fungi and nematodes as components of integrated pest management strategies for control of arthropod pests of crops, forests, urban habitats, and insects of medical and veterinary importance. Insect pathogenic viruses are a fruitful source of MCAs, particularly for the control of lepidopteran pests. Most research is focused on the baculoviruses, important pathogens of some globally important pests for which control has become difficult due to either pesticide resistance or pressure to reduce pesticide residues. Baculoviruses are accepted as safe, readily mass produced, highly pathogenic and easily formulated and applied control agents. New baculovirus products are appearing in many countries and gaining an increased market share. However, the absence of a practical in vitro mass production system, generally higher production costs, limited post application persistence, slow rate of kill and high host specificity currently contribute to restricted use in pest control. Overcoming these limitations are key research areas for which progress could open up use of insect viruses to much larger markets. A small number of entomopathogenic bacteria have been commercially developed for control of insect pests. These include several Bacillus thuringiensis sub-species, Lysinibacillus (Bacillus) sphaericus, Paenibacillus spp. and Serratia entomophila. B. thuringiensis sub-species kurstaki is the most widely used for control of pest insects of crops and forests, and B. thuringiensis sub-species israelensis and L. sphaericus are the primary pathogens used for medically important pests including dipteran vectors,. These pathogens combine the advantages of chemical pesticides and microbial control agents (MCAs): they are fast acting, easy to produce at a relatively low cost, easy to formulate, have a long shelf life and allow delivery using conventional application equipment and systemics (i.e. in transgenic plants). Unlike broad spectrum chemical pesticides, B. thuringiensis toxins are selective and negative environmental impact is very limited. Of the several commercially produced MCAs, B. thuringiensis (Bt) has more than 50% of market share. Extensive research, particularly on the molecular mode of action of Bt toxins, has been conducted over the past two decades. The Bt genes used in insect-resistant transgenic crops belong to the Cry and vegetative insecticidal protein families of toxins. Bt has been highly efficacious in pest management of corn and cotton, drastically reducing the amount of broad spectrum chemical insecticides used while being safe for consumers and non-target organisms. Despite successes, the adoption of Bt crops has not been without controversy. Although there is a lack of scientific evidence regarding their detrimental effects, this controversy has created the widespread perception in some quarters that Bt crops are dangerous for the environment. In addition to discovery of more efficacious isolates and toxins, an increase in the use of Bt products and transgenes will rely on innovations in formulation, better delivery systems and ultimately, wider public acceptance of transgenic plants expressing insect-specific Bt toxins. Fungi are ubiquitous natural entomopathogens that often cause epizootics in host insects and possess many desirable traits that favor their development as MCAs. Presently, commercialized microbial pesticides based on entomopathogenic fungi largely occupy niche markets. A variety of molecular tools and technologies have recently allowed reclassification of numerous species based on phylogeny, as well as matching anamorphs (asexual forms) and teleomorphs (sexual forms) of several entomopathogenic taxa in the Phylum Ascomycota. Although these fungi have been traditionally regarded exclusively as pathogens of arthropods, recent studies have demonstrated that they occupy a great diversity of ecological niches. Entomopathogenic fungi are now known to be plant endophytes, plant disease antagonists, rhizosphere colonizers, and plant growth promoters. These newly understood attributes provide possibilities to use fungi in multiple roles. In addition to arthropod pest control, some fungal species could simultaneously suppress plant pathogens and plant parasitic nematodes as well as promote plant growth. A greater understanding of fungal ecology is needed to define their roles in nature and evaluate their limitations in biological control. More efficient mass production, formulation and delivery systems must be devised to supply an ever increasing market. More testing under field conditions is required to identify effects of biotic and abiotic factors on efficacy and persistence. Lastly, greater attention must be paid to their use within integrated pest management programs; in particular, strategies that incorporate fungi in combination with arthropod predators and parasitoids need to be defined to ensure compatibility and maximize efficacy. Entomopathogenic nematodes (EPNs) in the genera Steinernema and Heterorhabditis are potent MCAs. Substantial progress in research and application of EPNs has been made in the past decade. The number of target pests shown to be susceptible to EPNs has continued to increase. Advancements in this regard primarily have been made in soil habitats where EPNs are shielded from environmental extremes, but progress has also been made in use of nematodes in above-ground habitats owing to the development of improved protective formulations. Progress has also resulted from advancements in nematode production technology using both in vivo and in vitro systems; novel application methods such as distribution of infected host cadavers; and nematode strain improvement via enhancement and stabilization of beneficial traits. Innovative research has also yielded insights into the fundamentals of EPN biology including major advances in genomics, nematode-bacterial symbiont interactions, ecological relationships, and foraging behavior. Additional research is needed to leverage these basic findings toward direct improvements in microbial control

    Embracing the otherness of others: an approach for teacher educators to assuage social and political tribalism

    Get PDF
    We live in a corrosively polarized climate where sharply divided beliefs about globalization and populism magnify existing biases. This problem is exacerbated by the fact that those who want to educate the next generation – teacher candidates – have been schooled in systems that focus on obedience, conformity, and docility. This breadcrumbs approach to education bears the danger of reproducing the status quo rather than changing it. This chapter explores the promises, perils, and provocations of curriculum regarding how we think about diversity and delineates a learning experience for pre-service teachers that allows them to identify, approach, and become the Other. The lived experience illuminates the cultural and experiential origins of their beliefs while reconciling the uncomfortable notion that bias is part of the human condition. In times where sharpened divisions intensify social and political tribalism it is essential to understand that it is the way one acts upon one’s biases that determines what kind of world one creates

    Influence of soil on the efficacy of entomopathogenic nematodes in reducing Diabrotica virgifera virgifera in maize

    Get PDF
    The use of entomopathogenic nematodes is one potential non-chemical approach to control the larvae of the invasive western corn rootworm (Diabrotica virgifera virgifera LeConte, Coleoptera: Chrysomelidae) in Europe. This study investigated the efficacy of Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae), Heterorhabditis megidis Poinar, Jackson and Klein (Rh., Heterorhabditidae) and Steinernema feltiae Filipjev (Rh., Steinernematidae) in reducing D. v. virgifera as a function of soil characteristics. A field experiment was repeated four times in southern Hungary using artificially infested maize plants potted into three different soils. Sleeve gauze cages were used to assess the number of emerging adult D. v. virgifera from the treatments and untreated controls. Results indicate that nematodes have the potential to reduce D. v. virgifera larvae in most soils; however, their efficacy can be higher in maize fields with heavy clay or silty clay soils than in sandy soils, which is in contrast to the common assumption that nematodes perform better in sandy soils than in heavy soils

    Acceleration techniques and evaluation on multi-core CPU, GPU and FPGA for image processing and super-resolution

    No full text
    Super-resolution (SR) techniques constitute a key element in image applications, which need high-resolution reconstruction, while in the worst case, only a single low-resolution observation is available. SR techniques involve computationally demanding processes, and thus, researchers are currently focusing on SR performance acceleration. Aiming at improving the SR performance, the current paper builds up on the characteristics of the L-SEABI SR method to introduce parallelization techniques for GPUs and FPGAs. The proposed techniques accelerate GPU reconstruction of ultra-high definition content, by achieving three (3×) times faster than the real-time performance on mid-range and previous generation devices and at least nine times (9×) faster than the real-time performance on high-end GPUs. The FPGA design leads to a scalable architecture performing four (4×) times faster than the real-time on low-end Xilinx Virtex 5 devices and 69 times (69×) faster than the real-time on the Virtex 2000t. Moreover, we confirm the benefits of the proposed acceleration techniques by employing them on a different category of image processing algorithms: on window-based disparity functions, for which the proposed GPU technique shows an improvement over the CPU performance ranging from 14 times (14×) to 64 times (64×), while the proposed FPGA architecture provides 29× acceleration. © 2016, Springer-Verlag Berlin Heidelberg

    Acceleration Techniques and Evaluation on Multicore CPU, GPU and FPGA for Image Processing and Super-Resolution

    No full text
    Super-Resolution (SR) techniques constitute a key element in image applications, which need high- resolution reconstruction while in the worst case only a single low-resolution observation is available. SR techniques involve computationally demanding processes and thus researchers are currently focusing on SR performance acceleration. Aiming at improving the SR performance, the current paper builds up on the characteristics of the L-SEABI Super-Resolution (SR) method to introduce parallelization techniques for GPUs and FPGAs. The proposed techniques accelerate GPU reconstruction of Ultra-High Definition content, by achieving three (3x) times faster than the real-time performance on mid-range and previous generation devices and at least nine times (9x) faster than the real-time performance on high-end GPUs. The FPGA design leads to a scalable architecture performing four (4x) times faster than the real-time on low-end Xilinx Virtex 5 devices and sixty-nine times (69x) faster than the real-time on the Virtex 2000t. Moreover, we confirm the benefits of the proposed acceleration techniques by employing them on a different category of image-processing algorithms: on window-based Disparity functions, for which the proposed GPU technique shows an improvement over the CPU performance ranging from 14 times (14x) to 64 times (64x) while the proposed FPGA architecture provides 29x acceleration
    corecore