20 research outputs found

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Pre-exascale HPC approaches for molecular dynamics simulations. Covid-19 research: a use case

    Get PDF
    Exascale computing has been a dream for ages and is close to becoming a reality that will impact how molecular simulations are being performed, as well as the quantity and quality of the information derived for them. We review how the biomolecular simulations field is anticipating these new architectures, making emphasis on recent work from groups in the BioExcel Center of Excel-lence for High Performance Computing. We exemplified the power of these simulation strategies with the work done by the HPC simulation community to fight Covid-19 pandemics.European Commission (BioExcel-2project), Grant/Award Number: 823830; Instituto de Salud Carlos III, Grant/AwardNumber: PT17/0009/0007; Ministerio de Ciencia e Innovación, Grant/Award Numbers: PID2020-116620GB-I00, RTI2018-096704-B-100.Peer ReviewedPostprint (author's final draft

    Neuropathological criteria of anti-IgLON5-related tauopathy

    Get PDF
    We recently reported a novel neurological syndrome characterized by a unique NREM and REM parasomnia with sleep apnea and stridor, accompanied by bulbar dysfunction and specific association with antibodies against the neuronal cell-adhesion protein IgLON5. All patients had the HLA-DRB1*1001 and HLA-DQB1*0501 alleles. Neuropathological findings in two patients revealed a novel tauopathy restricted to neurons and predominantly involving the hypothalamus and tegmentum of the brainstem. The aim of the current study is to describe the neuropathological features of the anti-IgLON5 syndrome and to provide diagnostic levels of certainty based on the presence of associated clinical and immunological data. The brains of six patients were examined and the features required for the neuropathological diagnosis were established by consensus. Additional clinical and immunological criteria were used to define "definite", "probable" and "possible" diagnostic categories. The brains of all patients showed remarkably similar features consistent with a neurodegenerative disease with neuronal loss and gliosis and absence of inflammatory infiltrates. The most relevant finding was the neuronal accumulation of hyperphosphorylated tau composed of both three-repeat (3R) and four-repeat (4R) tau isoforms, preferentially involving the hypothalamus, and more severely the tegmental nuclei of the brainstem with a cranio-caudal gradient of severity until the upper cervical cord. A "definite" diagnosis of anti-IgLON5-related tauopathy is established when these neuropathological features are present along with the detection of serum or CSF IgLON5 antibodies. When the antibody status is unknown, a "probable" diagnosis requires neuropathological findings along with a compatible clinical history or confirmation of possession of HLA-DRB1*1001 and HLA-DQB1*0501 alleles. A "possible" diagnosis should be considered in cases with compatible neuropathology but without information about a relevant clinical presentation and immunological status. These criteria should help to identify undiagnosed cases among archival tissue, and will assist future clinicopathological studies of this novel disorder

    Evidence for Transcript Networks Composed of Chimeric RNAs in Human Cells

    No full text
    International audienceThe classic organization of a gene structure has followed the Jacob and Monod bacterial gene model proposed more than 50 years ago. Since then, empirical determinations of the complexity of the transcriptomes found in yeast to human has blurred the definition and physical boundaries of genes. Using multiple analysis approaches we have characterized individual gene boundaries mapping on human chromosomes 21 and 22. Analyses of the locations of the 59 and 39 transcriptional termini of 492 protein coding genes revealed that for 85% of these genes the boundaries extend beyond the current annotated termini, most often connecting with exons of transcripts from other well annotated genes. The biological and evolutionary importance of these chimeric transcripts is underscored by (1) the non-random interconnections of genes involved, (2) the greater phylogenetic depth of the genes involved in many chimeric interactions, (3) the coordination of the expression of connected genes and (4) the close in vivo and three dimensional proximity of the genomic regions being transcribed and contributing to parts of the chimeric RNAs. The non-random nature of the connection of the genes involved suggest that chimeric transcripts should not be studied in isolation, but together, as an RNA network

    Identifying causative mechanisms linking early-life stress to psycho-cardio-metabolic multi-morbidity: The EarlyCause project

    No full text
    Introduction Depression, cardiovascular diseases and diabetes are among the major non-communicable diseases, leading to significant disability and mortality worldwide. These diseases may share environmental and genetic determinants associated with multimorbid patterns. Stressful early-life events are among the primary factors associated with the development of mental and physical diseases. However, possible causative mechanisms linking early life stress (ELS) with psycho-cardio-metabolic (PCM) multi-morbidity are not well understood. This prevents a full understanding of causal pathways towards the shared risk of these diseases and the development of coordinated preventive and therapeutic interventions. Methods and analysis This paper describes the study protocol for EarlyCause, a large-scale and inter-disciplinary research project funded by the European Union’s Horizon 2020 research and innovation programme. The project takes advantage of human longitudinal birth cohort data, animal studies and cellular models to test the hypothesis of shared mechanisms and molecular pathways by which ELS shapes an individual’s physical and mental health in adulthood. The study will research in detail how ELS converts into biological signals embedded simultaneously or sequentially in the brain, the cardiovascular and metabolic systems. The research will mainly focus on four biological processes including possible alterations of the epigenome, neuroendocrine system, inflammatome, and the gut microbiome. Life-course models will integrate the role of modifying factors as sex, socioeconomics, and lifestyle with the goal to better identify groups at risk as well as inform promising strategies to reverse the possible mechanisms and/or reduce the impact of ELS on multi-morbidity development in high-risk individuals. These strategies will help better manage the impact of multi-morbidity on human health and the associated risk

    Identifying causative mechanisms linking early-life stress to psycho-cardio-metabolic multi-morbidity:the EarlyCause project

    Get PDF
    Abstract Introduction: Depression, cardiovascular diseases and diabetes are among the major non-communicable diseases, leading to significant disability and mortality worldwide. These diseases may share environmental and genetic determinants associated with multimorbid patterns. Stressful early-life events are among the primary factors associated with the development of mental and physical diseases. However, possible causative mechanisms linking early life stress (ELS) with psycho-cardio-metabolic (PCM) multi-morbidity are not well understood. This prevents a full understanding of causal pathways towards the shared risk of these diseases and the development of coordinated preventive and therapeutic interventions. Methods and analysis: This paper describes the study protocol for EarlyCause, a large-scale and inter-disciplinary research project funded by the European Union’s Horizon 2020 research and innovation programme. The project takes advantage of human longitudinal birth cohort data, animal studies and cellular models to test the hypothesis of shared mechanisms and molecular pathways by which ELS shapes an individual’s physical and mental health in adulthood. The study will research in detail how ELS converts into biological signals embedded simultaneously or sequentially in the brain, the cardiovascular and metabolic systems. The research will mainly focus on four biological processes including possible alterations of the epigenome, neuroendocrine system, inflammatome, and the gut microbiome. Life-course models will integrate the role of modifying factors as sex, socioeconomics, and lifestyle with the goal to better identify groups at risk as well as inform promising strategies to reverse the possible mechanisms and/or reduce the impact of ELS on multi-morbidity development in high-risk individuals. These strategies will help better manage the impact of multi-morbidity on human health and the associated risk

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    Get PDF
    The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts.The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that -80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAFPeer reviewe

    Sex differences in oncogenic mutational processes

    Get PDF
    Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research.Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research.Peer reviewe
    corecore