226 research outputs found

    Three-dimensionalenvironment and vascularization induce osteogenic maturation of human adipose-derived stem cells comparable to that of bone-derived progenitors

    Get PDF
    While human adipose-derived stem cells (hADSCs) are known to possess osteogenic differentiation potential, the bone tissues formed are generally considered rudimentary and immature compared with those made by bone-derived precursor cells such as human bone marrow-derived mesenchymal stem cells (hBMSCs) and less commonly studied human calvarium osteoprogenitor cells (hOPs). Traditional differentiation protocols have tended to focus on osteoinduction of hADSCs through the addition of osteogenic differentiation media or use of stimulatory bioactive scaffolds which have not resulted in mature bone formation. Here, we tested the hypothesis that by reproducing the physical as well as biochemical bone microenvironment through the use of three-dimensional (3D) culture and vascularization we could enhance osteogenic maturation in hADSCs. In addition to biomolecular characterization, we performed structural analysis through extracellular collagen alignment and mineral density in our bone tissue engineered samples to evaluate osteogenic maturation. We further compared bone formed by hADSCs, hBMSCs, and hOPs against mature human pediatric calvarial bone, yet not extensively investigated. Although bone generated by all three cell types was still less mature than native pediatric bone, a fibrin-based 3D microenvironment together with vascularization boosted osteogenic maturation of hADSC making it similar to that of bone-derived osteoprogenitors. This demonstrates the important role of vascularization and 3D culture in driving osteogenic maturation of cells easily available but constitutively less committed to this lineage and suggests a crucial avenue for recreating the bone microenvironment for tissue engineering of mature craniofacial bone tissues from pediatric hADSCs, as well as hBMSCs and hOPs

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Measurement of the WW production cross section in p anti-p collisions at s**(1/2) = 1.96 TeV

    Get PDF
    We present a measurement of the W boson pair-production cross section in p anti-p collisions at a center-of-mass energy of sqrt{s}=1.96 TeV. The data, collected with the Run II DO detector, correspond to an integrated luminosity of 224-252 pb^-1 depending on the final state (ee, emu or mumu). We observe 25 candidates with a background expectation of 8.1+/-0.6(stat)+/-0.6(syst)+/-0.5(lum) events. The probability for an upward fluctuation of the background to produce the observed signal is 2.3x10^-7, equivalent to 5.2 standard deviations.The measurement yields a cross section of 13.8+4.3/-3.8(stat)+1.2/-0.9(syst)+/-0.9(lum) pb, in agreement with predictions from the standard model.Comment: submitted to PR

    Measurement of the Lambda^0_b lifetime in the decay Lambda^0_b -> J/psi Lambda^0 with the D0 Detector

    Get PDF
    We present measurements of the Lambda^0_b lifetime in the exclusive decay channel Lambda^0_{b}->J/psi Lambda^0, with J/psi to mu+ mu- and Lambda^0 to p pi-, the B^0 lifetime in the decay B^0 -> J/psi K^0_S with J/psi to mu+ mu- and K^0_S to pi+ pi-, and the ratio of these lifetimes. The analysis is based on approximately 250 pb^{-1} of data recorded with the D0 detector in pp(bar) collisions at sqrt{s}=1.96 TeV. The Lambda^0_b lifetime is determined to be tau(Lambda^0_b) = 1.22 +0.22/-0.18 (stat) +/- 0.04 (syst) ps, the B^0 lifetime tau(B^0) = 1.40 +0.11/-0.10 (stat) +/- 0.03 (syst) ps, and the ratio tau(Lambda^0_b)/tau(B^0) = 0.87 +0.17/-0.14 (stat) +/- 0.03 (syst). In contrast with previous measurements using semileptonic decays, this is the first determination of the Lambda^0_b lifetime based on a fully reconstructed decay channel.Comment: 7 pages, 4 figures, Submitted to Physical Review Letters, v2: Added FNAL Pub-numbe

    Erratum to Measurement of σ(ppˉ→Z)⋅Br(Z→ττ)\sigma (p \bar p \to Z) \cdot Br(Z \to \tau\tau) at s=\bm{\sqrt{s}=}1.96 TeV, published in Phys. Rev. D {71}, 072004 (2005)

    Full text link
    A change in estimated integrated luminosity (from 226 pb−1to257pb^{-1} to 257 pb^{-1}leadstoacorrectedvaluefor leads to a corrected value for {\sigma (p \bar p \to Z) \cdot}BrBr{(Z \to \tau \tau)}of of 209\pm13(stat.)\pm16(syst.)\pm13(lum) pb

    Measurement of the View the tt production cross-section using eÎŒ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σttÂŻ) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σttÂŻ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σttÂŻ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV

    Get PDF
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions

    The performance of the jet trigger for the ATLAS detector during 2011 data taking

    Get PDF
    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction

    Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at sqrt (s) = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for dark matter produced in association with a hadronically decaying W or Z boson using 3.2 fb−1 of pp collisions at View the MathML sources=13 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet compatible with a W or Z boson and with large missing transverse momentum are analysed. The data are consistent with the Standard Model predictions and are interpreted in terms of both an effective field theory and a simplified model containing dark matter

    Measurement of the double-differential high-mass Drell-Yan cross section in pp collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the double-differential cross section for the Drell-Yan Z/γ∗ → ℓ+ℓ− and photon-induced γγ → ℓ+ℓ− processes where ℓ is an electron or muon. The measurement is performed for invariant masses of the lepton pairs, mℓℓ, between 116 GeV and 1500 GeV using a sample of 20.3 fb−1 of pp collisions data at centre-of-mass energy of √s = 8 TeV collected by the ATLAS detector at the LHC in 2012. The data are presented double differentially in invariant mass and absolute dilepton rapidity as well as in invariant mass and absolute pseudorapidity separation of the lepton pair. The single-differential cross section as a function of mℓℓ is also reported. The electron and muon channel measurements are combined and a total experimental precision of better than 1% is achieved at low mℓℓ. A comparison to next-to-next-to-leading order perturbative QCD predictions using several recent parton distribution functions and including next-to-leading order electroweak effects indicates the potential of the data to constrain parton distribution functions. In particular, a large impact of the data on the photon PDF is demonstrated
    • 

    corecore