1,593 research outputs found

    Modeling the optical properties of self-organized arrays of liquid crystal defects

    No full text
    International audienceLocal full Mueller matrix measurements in the Fourier plane of a microscope lens were used to determine the internal anisotropic ordering in periodic linear arrays of smectic liquid crystal defects, known as 'oily streaks'. We propose a single microstructure-dependent model taking into account the anisotropic dielectric function of the liquid crystal that reproduces the smectic layers orientation and organization in the oily streaks. The calculated Mueller matrix elements are compared to the measured data to reveal the anchoring mechanism of the smectic oily streaks on the substrate and evidence the presence of new type of defect arrangement. Beyond the scientific inquiry, the understanding and control of the internal structure of such arrays offer technological opportunities for developing liquid-crystal based sensors and self-assembled nanostructures

    Light management in highly-textured perovskite solar cells: From full-device ellipsometry characterization to optical modelling for quantum efficiency optimization

    Full text link
    While perovskite solar cells (PSCs) are now reaching high power conversion efficiencies (PCEs), further performance improvement requires a fine management and an optimization of the light pathway and harvesting in the cells. These go through an accurate understanding, characterization and modelling of the optical processes occurring in these complex, often textured, multi-layered systems. In the present work, we have considered a typical methylammonium lead iodide (MAPI) solar cell built on a fluorine-doped tin oxide (FTO) electrode of high roughness (43 nm RMS). By variable-angle spectroscopic ellipsometry (VASE) of the full PSC device, we have been able to determine the optical constants of all the device layers. We have designed a one-dimensional (1D) optical model of the stacked layers where the rough texture is described as layers of effective-medium index. We have supported the model using data extracted from scanning electron microscopy, diffuse spectroscopy and photovoltaic efficiency measurements. We show that the 1D model, while insufficient to describe scattering by the FTO plate alone, gives an accurate description of the full device optical properties. By comparison with the experimental external quantum efficiency (EQE), we estimate the internal quantum efficiency (IQE) and the effect of the losses related to electron transfer. Based on this work, we finally discuss the optical losses mechanisms and the possible strategies that can be implemented to improve light management within PSC devices and further increase their performances.Comment: 14 pages, 5 figure

    An achiral magnetic photonic antenna as a tunable nanosource of superchiral light

    Full text link
    Sensitivity to molecular chirality is crucial for many fields, from biology and chemistry to the pharmaceutical industry. By generating superchiral light, nanophotonics has brought innovative solutions to reduce the detection volume and increase sensitivity at the cost of a non-selectivity of light chirality or a strong contribution to the background. Here, we theoretically propose an achiral plasmonic resonator, based on a rectangular nanoslit in a thin gold layer behaving as a magnetic dipole, to generate a tunable nanosource of purely superchiral light. This nanosource is free of any background, and the sign of its chirality is externally tunable in wavelength and polarization. These properties result from the coupling between the incident wave and the magnetic dipolar character of our nano-antenna. Thus, our results propose a platform with deep subwavelength detection volumes for chiral molecules in particular, in the visible, and a roadmap for optimizing the signal-to-noise ratios in circular dichroism measurements to reach single-molecule sensitivity

    True Circular Dichroism in Optically Active Achiral Metasurfaces and Its Relation to Chiral Near-Fields

    Full text link
    Optically active achiral metasurfaces offer a promising way to detect chiral molecules based on chiroptic methods. The combination of plasmonic enhanced circular dichroism and reversible optical activity would boost the sensitivity and provide enantiomerselective surfaces while using a single sensing site. In this work, we use metasurfaces containing arrays of U-shaped resonators as a benchmark for analyzing the optical activity of achiral materials. Although the peculiar optical activity of these metasurfaces has 1 been quite well described, we present here an experimental and numerical quantitative determination of the different contributions to the measured optical activity. In particular, it is shown that linear birefringence and retardance contribute, but only marginally, to the apparent circular dichroism of the metasurface associated with the excitation of magnetoelectric modes. We then numerically demonstrate the peculiar near-field properties of the magneto-electric modes and explain how these properties could be reflected in the far-field polarimetric properties in the presence of chiral molecules. This work provides alternatives for the detection scheme of chiral molecules using plasmonic resonators.Comment: ACS Applied Optical Materials, 202

    Self-organized arrays of dislocations in thin smectic liquid crystal films

    Get PDF
    International audienceCombining optical microscopy, synchrotron X-ray diffraction and ellipsometry, we studied the internal structure of linear defect domains (oily streaks) in films of smectic liquid crystal 8CB with thickness 100-300 nm confined between air and a rubbed PVA polymer substrate which impose hybrid anchoring conditions (normal and unidirectional planar, respectively). We show how the presence or absence of dislocations control the structure of highly deformed thin smectic films. Each domain contains smectic layers curved in the shape of flattened hemicylinders to satisfy both anchoring conditions, together with grain boundaries whose size and shape are controlled by the presence of dislocation lines. A flat grain boundary normal to the interface connects neighboring hemicylinders, while a rotating grain boundary (RGB) is located near the axis of curvature of the cylinders. The RGB shape appears such that dislocation lines are concentrated at its summit close to the air interface. The smectic layers reach the polymer substrate via a transition region where the smectic layer orientation satisfies the planar anchoring condition over the entire polymer substrate and whose thickness does not depend on the one of the film. The strength of the planar anchoring appears to be high, larger than 10 −2 J/m 2 , compensating for the high energy cost of creating an additional 2D defect between an horizontal smectic layer and perpendicular ones. This 2D defect may be melted, in order to avoid the creation of a transition region structure composed of a large number of dislocations. As a result, linear defect domains can be considered as arrays of oriented defects, straight dislocations of various Burger vectors, whose location is now known and 2D nematic defects. The possibility of easy variation between the present structure with a moderate amount of dislocations and a structure with a large number of dislocations is also demonstrated

    Enhancement and Inhibition of Spontaneous Photon Emission by Resonant Silicon Nanoantennas

    Get PDF
    Substituting noble metals for high-index dielectrics has recently been proposed as an alternative strategy in nanophotonics to design broadband optical resonators and circumvent the Ohmic losses of plasmonic materials. In this paper, we demonstrate that subwavelength silicon nanoantennas can manipulate the photon emission dynamics of fluorescent molecules. In practice, we show that dielectric nanoantennas can both increase and decrease the local density of optical states at room temperature, a process that is inaccessible with noble metals at the nanoscale. Using scanning probe microscopy, we analyze quantitatively, in three dimensions, the near-field interaction between a 100-nm fluorescent nanosphere and silicon nanoantennas with diameters ranging between 170 and 250 nm. Associated with numerical simulations, these measurements indicate increased or decreased total spontaneous decay rates by up to 15% and a gain in the collection efficiency of emitted photons by up to 85%. Our study demonstrates the potential of silicon-based nanoantennas for the low-loss manipulation of solid-state emitters at the nanoscale and at room temperature

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives

    Get PDF
    This paper discusses the fundamentals, applications, potential, limitations, and future perspectives of polarized light reflection techniques for the characterization of materials and related systems and devices at the nanoscale. These techniques include spectroscopic ellipsometry, polarimetry, and reflectance anisotropy. We give an overview of the various ellipsometry strategies for the measurement and analysis of nanometric films, metal nanoparticles and nanowires, semiconductor nanocrystals, and submicron periodic structures. We show that ellipsometry is capable of more than the determination of thickness and optical properties, and it can be exploited to gain information about process control, geometry factors, anisotropy, defects, and quantum confinement effects of nanostructures
    corecore