849 research outputs found

    A quantum spin transducer based on nano electro-mechancial resonator arrays

    Full text link
    Implementation of quantum information processing faces the contradicting requirements of combining excellent isolation to avoid decoherence with the ability to control coherent interactions in a many-body quantum system. For example, spin degrees of freedom of electrons and nuclei provide a good quantum memory due to their weak magnetic interactions with the environment. However, for the same reason it is difficult to achieve controlled entanglement of spins over distances larger than tens of nanometers. Here we propose a universal realization of a quantum data bus for electronic spin qubits where spins are coupled to the motion of magnetized mechanical resonators via magnetic field gradients. Provided that the mechanical system is charged, the magnetic moments associated with spin qubits can be effectively amplified to enable a coherent spin-spin coupling over long distances via Coulomb forces. Our approach is applicable to a wide class of electronic spin qubits which can be localized near the magnetized tips and can be used for the implementation of hybrid quantum computing architectures

    Identification of 2,4-Disubstituted Imidazopyridines as Hemozoin Formation Inhibitors with Fast-Killing Kinetics and In Vivo Efficacy in the Plasmodium falciparum NSG Mouse Model

    Get PDF
    A series of 2,4-disubstituted imidazopyridines, originating from a SoftFocus Kinase library, was identified from a high throughput phenotypic screen against the human malaria parasite Plasmodium falciparum. Hit compounds showed moderate asexual blood stage activity. During lead optimization, several issues were flagged such as cross-resistance against the multidrug-resistant K1 strain, in vitro cytotoxicity, and cardiotoxicity and were addressed through structure–activity and structure–property relationship studies. Pharmacokinetic properties were assessed in mice for compounds showing desirable in vitro activity, a selectivity window over cytotoxicity, and microsomal metabolic stability. Frontrunner compound 37 showed good exposure in mice combined with good in vitro activity against the malaria parasite, which translated into in vivo efficacy in the P. falciparum NOD-scid IL-2Rγnull (NSG) mouse model. Preliminary mechanistic studies suggest inhibition of hemozoin formation as a contributing mode of action

    Paternal effect on genomic activation, clinical pregnancy and live birth rate after ICSI with cryopreserved epididymal versus testicular spermatozoa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study takes an in depth look at embryonic development, implantation, pregnancy and live birth rates with frozen epididymal and testicular sperm from obstructed (OA) and non-obstructed (NOA) patients.</p> <p>Methods</p> <p>Paternal effect of sperm source on zygote formation, embryonic cleavage, and genomic activation were examined. Additional outcome parameters monitored were clinical pregnancy rate (CPR), implantation rate (IR) and live birth rate.</p> <p>Results</p> <p>In this report, we retrospectively analyzed 156 ICSI cycles using cryopreserved epididymal sperm (ES; n = 77) or testicular sperm (TESE; n = 79). The developmental potential of embryos did not appear to be influenced by the type of surgically retrieved sperm. The average number of blastomeres observed on Day 3 was not different among different groups; 7.5 +/- 1.7 (ES), 7.6 +/- 2.1 (TESE-OA) and 6.5 +/- 2.3 (TESE-NOA). Compaction and blastulation rates, both indicators of paternal genomic activation, were similar in embryos derived from ICSI with ES or TESE from OA as well as NOA men. The only parameter significantly affected in NOA-TESE cases was the fertilization rate. CPR and IR with cryopreserved TESE (TESE-OA 59%, 34%, and TESE-NOA 37%, 20%) were also not statistically different, from that achieved with cryopreserved ES (61% and 39%). Live birth rates also appeared to be independent of sperm type. The 87 clinical pregnancies established using cryopreserved TESE and ES, resulted in the birth of 115 healthy infants. No congenital anomalies were noted.</p> <p>Conclusion</p> <p>Zygotic activation seems to be independent of sperm origin and type of azoospermia.</p

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations

    Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector

    Get PDF
    Results of a search for H → τ τ decays are presented, based on the full set of proton-proton collision data recorded by the ATLAS experiment at the LHC during 2011 and 2012. The data correspond to integrated luminosities of 4.5 fb−1 and 20.3 fb−1 at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV respectively. All combinations of leptonic (τ → `νν¯ with ` = e, µ) and hadronic (τ → hadrons ν) tau decays are considered. An excess of events over the expected background from other Standard Model processes is found with an observed (expected) significance of 4.5 (3.4) standard deviations. This excess provides evidence for the direct coupling of the recently discovered Higgs boson to fermions. The measured signal strength, normalised to the Standard Model expectation, of µ = 1.43 +0.43 −0.37 is consistent with the predicted Yukawa coupling strength in the Standard Model

    Mechano-energetics of the asynchronous and resynchronized heart

    Get PDF
    Abnormal electrical activation of the ventricles creates major abnormalities in cardiac mechanics. Local contraction patterns, as reflected by measurements of local strain, are not only out of phase, but often also show opposing length changes in early and late activated regions. As a consequence, the efficiency of cardiac pump function (the amount of stroke work generated by a unit of oxygen consumed) is approximately 30% lower in asynchronous than in synchronous hearts. Moreover, the amount of work performed in myocardial segments becomes considerably larger in late than in early activated regions. Cardiac Resynchronization Therapy (CRT) improves mechano-energetics of the previously asynchronous heart in various ways: it alleviates impediment of the abnormal contraction on blood flow, it increases myocardial efficiency, it recruits contraction in the previously early activated septum and it creates a more uniform distribution of myocardial blood flow. These factors act together to increase the range of cardiac work that can be delivered by the patients’ heart, an effect that can explain the increased exercise tolerance and quality of life reported in several CRT trials
    corecore