63 research outputs found

    Training an automated circulating tumor cell classifier when the true classification is uncertain

    Get PDF
    Circulating tumor cell (CTC) and tumor-derived extracellular vesicle (tdEV) loads are prognostic factors of survival in patients with carcinoma. The current method of CTC enumeration relies on operator review and, unfortunately, has moderate interoperator agreement (Fleiss’ kappa 0.60) due to difficulties in classifying CTC-like events. We compared operator review, ACCEPT automated image processing, and refined the output of a deep-learning algorithm to identify CTC and tdEV for the prediction of survival in patients with metastatic and nonmetastatic cancers. Operator review is only defined for CTC. Refinement was performed using automatic contrast maximization CM-CTC of events detected in cancer and in benign samples (CM-CTC). We used 418 samples from benign diseases, 6,293 from nonmetastatic breast, 2,408 from metastatic breast, and 698 from metastatic prostate cancer to train, test, optimize, and evaluate CTC and tdEV enumeration. For CTC identification, the CM-CTC performed best on metastatic/nonmetastatic breast cancer, respectively, with a hazard ratio (HR) for overall survival of 2.6/2.1 vs. 2.4/1.4 for operator CTC and 1.2/0.8 for ACCEPT-CTC. For tdEV identification, CM-tdEV performed best with an HR of 1.6/2.9 vs. 1.5/1.0 with ACCEPT-tdEV. In conclusion, contrast maximization is effective even though it does not utilize domain knowledge

    Single-step isolation of extracellular vesicles by size-exclusion chromatography

    Get PDF
    Background: Isolation of extracellular vesicles from plasma is a challenge due to the presence of proteins and lipoproteins. Isolation of vesicles using differential centrifugation or density-gradient ultracentrifugation results in co-isolation of contaminants such as protein aggregates and incomplete separation of vesicles from lipoproteins, respectively. Aim: To develop a single-step protocol to isolate vesicles from human body fluids. Methods: Platelet-free supernatant, derived from platelet concentrates, was loaded on a sepharose CL-2B column to perform size-exclusion chromatography (SEC; n=3). Fractions were collected and analysed by nanoparticle tracking analysis, resistive pulse sensing, flow cytometry and transmission electron microscopy. The concentrations of high-density lipoprotein cholesterol (HDL) and protein were measured in each fraction. Results: Fractions 9–12 contained the highest concentrations of particles larger than 70 nm and platelet-derived vesicles (46%±6 and 61%±2 of totals present in all collected fractions, respectively), but less than 5% of HDL and less than 1% of protein (4.8%±1 and 0.65%±0.3, respectively). HDL was present mainly in fractions 18–20 (32%±2 of total), and protein in fractions 19–21 (36%±2 of total). Compared to the starting material, recovery of platelet-derived vesicles was 43%±23 in fractions 9–12, with an 8-fold and 70-fold enrichment compared to HDL and protein. Conclusions: SEC efficiently isolates extracellular vesicles with a diameter larger than 70 nm from platelet-free supernatant of platelet concentrates. Application SEC will improve studies on the dimensional, structural and functional properties of extracellular vesicles

    Unbiased and automated identification of a circulating tumour cell definition that associates with overall survival

    Get PDF
    Circulating tumour cells (CTC) in patients with metastatic carcinomas are associated with poor survival and can be used to guide therapy. Classification of CTC however remains subjective, as they are morphologically heterogeneous. We acquired digital images, using the CellSearch™ system, from blood of 185 castration resistant prostate cancer (CRPC) patients and 68 healthy subjects to define CTC by computer algorithms. Patient survival data was used as the training parameter for the computer to define CTC. The computer-generated CTC definition was validated on a separate CRPC dataset comprising 100 patients. The optimal definition of the computer defined CTC (aCTC) was stricter as compared to the manual CellSearch CTC (mCTC) definition and as a consequence aCTC were less frequent. The computer-generated CTC definition resulted in hazard ratios (HRs) of 2.8 for baseline and 3.9 for follow-up samples, which is comparable to the mCTC definition (baseline HR 2.9, follow-up HR 4.5). Validation resulted in HRs at baseline/follow-up of 3.9/5.4 for computer and 4.8/5.8 for manual definitions. In conclusion, we have defined and validated CTC by clinical outcome using a perfectly reproducing automated algorithm

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    Bulk immunoassays for analysis of extracellular vesicles

    No full text
    There is increasing clinical interest in extracellular vesicles (EV) for diagnostic and treatment purposes. This review provides an overview of bulk immunoassays to analyse EV. Western blot and enzyme-linked immunosorbent assay are still the two predominant bulk immunoassays. Recently, new assays have become available that can detect exposure to EV concentrations that are up to 10,000-fold lower. This is advantageous for applications that detect rare EV. Other important parameters are the detectable concentration range, the required sample volume, whether simultaneous presence of different antigens on a single EV can be detected, size selectivity of each assay and practical considerations. In this review, we will explain the working principles of the traditional and novel assays together with their performance parameters. The most sensitive assays are micro-nuclear magnetic resonance, surface plasmon resonance, and time-resolved fluorescent immunoassa

    Detection of cancer before distant metastasis

    Get PDF
    Background: To establish a distant metastasis (DM) cells must disseminate from the primary tumor and overcome a series of obstacles, the metastatic cascade. In this study we develop a mathematical model for this cascade to estimate the tumor size and the circulating tumor cell (CTC) load before the first metastasis has formed from a primary breast cancer tumor. Methods: The metastatic cascade is described in discrete steps: 1. local tumor growth; 2. dissemination into circulation; 3. survival in circulation; 4. extravasation into tissue; and 5. growth into a metastasis. The model was built using data and relationships described in the literature to predict the relationship between tumor size and probability of distant metastasis for 38715 patients with surgically removed TXNXM0 primary breast cancer from the Netherlands Cancer Registry. The model was calibrated using primary tumor size, probability of distant metastasis and time to distant metastasis for 1489 patients with stage T1BNXM0 (25% of total patients with T1BNXM0). Validation of the model was done with data for all patients. Results: From the time to distant metastasis of these 38715 breast cancer patients, we determined a tumor doubling time of 1.7 +/- 0.9 months. Fitting the data for 25% of T-1B patients estimates a metastatic efficiency of 1 metastasis formed per 60 million disseminated tumor cells. Validation of the model to data of patients in all T-stages shows good agreement between model and epidemiological data. To reduce the 5-year risk of distant metastasis for TXNXM0 from 9.2% to 1.0%, the primary tumor needs to be detected and removed before it reaches a diameter of 2.7 +/- 1.6 mm. At this size, the model predicts that there will be 9 +/- 6 CTC/L blood. Conclusions: To reduce the rate of distant metastasis in surgically treated TXNXM0 breast cancer to 1%, imaging technology will need to be able to detect lesions of 2.7 mm in diameter or smaller. Before CTC detection can be applied in the early disease setting, sensitivity will need to be improved by at least 15-fold and combined with technology that minimizes false positive

    Flow-based immunomagnetic enrichment of circulating tumor cells from diagnostic leukapheresis product

    Get PDF
    The clinical utility of circulating tumor cells (CTCs) is hampered by the low number of cells detected. Diagnostic leukapheresis (DLA) offers a solution but, due to the observed non-specific binding and clumping, processing of DLA samples using the CellSearch system only allows for the processing of aliquots consisting of ~ 2% of the total DLA sample per test. Here, we introduce a flow enrichment target capture Halbach-array (FETCH)-based separation method in combination with a DNase preprocessing step to capture CTCs from larger fractions of DLA products without clumping. To evaluate the FETCH method, we processed peripheral blood samples from 19 metastatic castration-naïve prostate cancer (mCNPC) patients with CellSearch, and processed 2% aliquots of leukapheresis samples from the same patients with CellSearch as well as FETCH with or without DNase preprocessing. Using 2% aliquots from six patients, the use of FETCH with fewer immunomagnetic epithelial cellular adhesion molecule (EpCAM) conjugated ferrofluids was tested, whereas 20% aliquots from four patients were used to evaluate the processing of 10-fold larger DLA samples using FETCH. Results show that the cell clumping normally seen after immunomagnetic enrichment of DLA material was greatly reduced with the use of DNase pretreatment, while the number of CTCs detected was not affected. The number of CTCs detected in 2% aliquots of DLA using FETCH was unchanged compared to CellSearch and did not decrease when using down to 10% of the volume of immunomagnetic anti-EpCAM ferrofluids normally used in a CellSearch test, whereas the number of co-enriched white blood cells reduced a median 3.2-fold. Processing of a 20% aliquot of DLA with FETCH resulted in a 14-fold increase in CTCs compared to the processing of 2% aliquots of DLA using CellSearch and a total 42-fold median increase in CTCs compared to peripheral-blood CellSearch.</p

    Platelet removal by single-step centrifugation

    No full text
    The study of extracellular vesicles (EVs) in plasma requires removal of cells including platelets. At present, a two-step centrifugation protocol is recommended and commonly used. A simpler protocol that is less operator dependent is likely to improve the quality of plasma samples collected for EV research. The objective of this study is to develop an easy, fast and clinically applicable centrifugation protocol to produce essentially platelet-free plasma with a high yield for EV research. We compared the two-step centrifugation protocol to a single-step protocol at 5,000 g for 20 minutes. The removal of platelets was computationally predicted and experimentally validated. Flow cytometry was used to detect residual platelets and platelet-derived (CD61+) EVs. The single-step protocol at 5,000 g (i) is less laborious and approximately ten minutes faster, (ii) removes platelets as effective as the two-step centrifugation protocol, and (iii) has a ~ 10% higher plasma yield, whereas (iv) the recovery of platelet-derived EVs is comparable. For future research on plasma EVs we recommend the newly developed, easy and fast single-step protocol for preparation of platelet-free plasma for research on plasma biomarkers including EVs
    corecore