38 research outputs found

    Impedance Analysis of Complex Formation Equilibria in Phosphatidylcholine Bilayers Containing Decanoic Acid or Decylamine

    Get PDF
    Bilayer lipid membranes composed of phosphatidylcholine and decanoic acid or phosphatidylcholine and decylamine were investigated using electrochemical impedance spectroscopy. Interaction between membrane components causes significant deviations from the additivity rule. Area, capacitance, and stability constant values for the complexes were calculated based on the model assuming 1:1 stoichiometry, and the model was validated by comparison of these values to experimental results. We established that phosphatidylcholine and decylamine form highly stable 1:1 complexes. In the case of decanoic acid-modified phosphatidylcholine membranes, complexes with stoichiometries other than 1:1 should be taken into consideration

    Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp collisions at 8 TeV

    Get PDF
    Peer reviewe

    Measurement of prompt J/ψ pair production in pp collisions at √s = 7 Tev

    Get PDF
    Peer reviewe

    Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Precise mapping of the magnetic field in the CMS barrel yoke using cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPThe CMS detector is designed around a large 4 T superconducting solenoid, enclosed in a 12 000-tonne steel return yoke. A detailed map of the magnetic field is required for the accurate simulation and reconstruction of physics events in the CMS detector, not only in the inner tracking region inside the solenoid but also in the large and complex structure of the steel yoke, which is instrumented with muon chambers. Using a large sample of cosmic muon events collected by CMS in 2008, the field in the steel of the barrel yoke has been determined with a precision of 3 to 8% depending on the location.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Enhancement of energy and combustion properties of hydrochar via citric acid catalysed secondary char production

    No full text
    The present study investigates the use of hydrothermal carbonization (HTC) to upgrade agro-waste into solid biofuels and the use of citric acid (CA) as a catalyst capable of enhancing energy properties of hydrochars. HTC of pineapple waste (PA) was carried out at 180, 220, and 250 °C at a fixed 1-h residence time with and without the addition of CA. Contrarily to the current understanding with regard to the use of an acid catalyst during HTC, CA addition shows to appreciably increase hydrochar mass yields with HTC temperature, while increasing their degree of coalification and carbon retention. PA hydrochars produced with the addition of CA exhibit higher heating values (HHV) up to 29.7 MJ/kg dry basis (db), low residual ash (between 0.53 and 0.75 wt% db), and better combustion properties when compared to those of hydrochars obtained without CA addition. We show that the increase in mass yields and energy properties observed for hydrochars is due to CA catalytic effect toward back-polymerization of organics in the liquid phase to form secondary char. Secondary char formation and its role in influencing the hydrochar properties as solid biofuels are demonstrated by scanning electron microscopy, proximate, elemental analysis, and combustion reactivity
    corecore