473 research outputs found

    Traces of past activity in the Galactic Centre

    Full text link
    The Milky Way centre hosts a supermassive Black Hole (BH) with a mass of ~4*10^6 M_Sun. Sgr A*, its electromagnetic counterpart, currently appears as an extremely weak source with a luminosity L~10^-9 L_Edd. The lowest known Eddington ratio BH. However, it was not always so; traces of "glorious" active periods can be found in the surrounding medium. We review here our current view of the X-ray emission from the Galactic Center (GC) and its environment, and the expected signatures (e.g. X-ray reflection) of a past flare. We discuss the history of Sgr A*'s past activity and its impact on the surrounding medium. The structure of the Central Molecular Zone (CMZ) has not changed significantly since the last active phase of Sgr A*. This relic torus provides us with the opportunity to image the structure of an AGN torus in exquisite detail.Comment: Invited refereed review. Chapter of the book: "Cosmic ray induced phenomenology in star forming environments" (eds. Olaf Reimer and Diego F. Torres

    Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV

    Full text link
    Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 <pT,assoc<pT,trig< < p_{\rm{T}, assoc} < p_{\rm{T}, trig} < 5.0 GeV/cc is examined, to include correlations induced by jets originating from low momen\-tum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range η<0.9|\eta|<0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p-Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non-jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton--parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p-Pb collisions. Further, the number scales in the intermediate multiplicity region with the number of binary nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/161

    Multi-particle azimuthal correlations in p-Pb and Pb-Pb collisions at the CERN Large Hadron Collider

    Full text link
    Measurements of multi-particle azimuthal correlations (cumulants) for charged particles in p-Pb and Pb-Pb collisions are presented. They help address the question of whether there is evidence for global, flow-like, azimuthal correlations in the p-Pb system. Comparisons are made to measurements from the larger Pb-Pb system, where such evidence is established. In particular, the second harmonic two-particle cumulants are found to decrease with multiplicity, characteristic of a dominance of few-particle correlations in p-Pb collisions. However, when a Δη|\Delta \eta| gap is placed to suppress such correlations, the two-particle cumulants begin to rise at high-multiplicity, indicating the presence of global azimuthal correlations. The Pb-Pb values are higher than the p-Pb values at similar multiplicities. In both systems, the second harmonic four-particle cumulants exhibit a transition from positive to negative values when the multiplicity increases. The negative values allow for a measurement of v2{4}v_{2}\{4\} to be made, which is found to be higher in Pb-Pb collisions at similar multiplicities. The second harmonic six-particle cumulants are also found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find v2{4}v2{6}0v_{2}\{4\} \simeq v_{2}\{6\}\neq 0 which is indicative of a Bessel-Gaussian function for the v2v_{2} distribution. For very high-multiplicity Pb-Pb collisions, we observe that the four- and six-particle cumulants become consistent with 0. Finally, third harmonic two-particle cumulants in p-Pb and Pb-Pb are measured. These are found to be similar for overlapping multiplicities, when a Δη>1.4|\Delta\eta| > 1.4 gap is placed.Comment: 25 pages, 11 captioned figures, 3 tables, authors from page 20, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/87

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions

    Get PDF
    At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark-gluon plasma (QGP)(1). Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed(2-6). Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions(7), is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions(8,9), but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton-proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with the p-Pb collision results(10,11), indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed.Peer reviewe

    K0S and Λ production in Pb-Pb collisions at sNN−−−−√=2.76  TeV

    Get PDF
    The ALICE measurement of K0S and Λ production at midrapidity in Pb-Pb collisions at sNN−−−√=2.76  TeV is presented. The transverse momentum (pT) spectra are shown for several collision centrality intervals and in the pT range from 0.4  GeV/c (0.6  GeV/c for Λ) to 12  GeV/c. The pT dependence of the Λ/K0S ratios exhibits maxima in the vicinity of 3  GeV/c, and the positions of the maxima shift towards higher pT with increasing collision centrality. The magnitude of these maxima increases by almost a factor of three between most peripheral and most central Pb-Pb collisions. This baryon excess at intermediate pT is not observed in pp interactions at s√=0.9  TeV and at s√=7  TeV. Qualitatively, the baryon enhancement in heavy-ion collisions is expected from radial flow. However, the measured pT spectra above 2  GeV/c progressively decouple from hydrodynamical-model calculations. For higher values of pT, models that incorporate the influence of the medium on the fragmentation and hadronization processes describe qualitatively the pT dependence of the Λ/K0S ratio

    Southern African Large Telescope Spectroscopy of BL Lacs for the CTA project

    Get PDF
    In the last two decades, very-high-energy gamma-ray astronomy has reached maturity: over 200 sources have been detected, both Galactic and extragalactic, by ground-based experiments. At present, Active Galactic Nuclei (AGN) make up about 40% of the more than 200 sources detected at very high energies with ground-based telescopes, the majority of which are blazars, i.e. their jets are closely aligned with the line of sight to Earth and three quarters of which are classified as high-frequency peaked BL Lac objects. One challenge to studies of the cosmological evolution of BL Lacs is the difficulty of obtaining redshifts from their nearly featureless, continuum-dominated spectra. It is expected that a significant fraction of the AGN to be detected with the future Cherenkov Telescope Array (CTA) observatory will have no spectroscopic redshifts, compromising the reliability of BL Lac population studies, particularly of their cosmic evolution. We started an effort in 2019 to measure the redshifts of a large fraction of the AGN that are likely to be detected with CTA, using the Southern African Large Telescope (SALT). In this contribution, we present two results from an on-going SALT program focused on the determination of BL Lac object redshifts that will be relevant for the CTA observatory

    phi-Meson production at forward rapidity in p-Pb collisions at root s(NN)=5.02 TeV and in pp collisions at root s=2.76 TeV

    Get PDF
    The first study of phi-meson production in p-Pb collisions at forward and backward rapidity, at a nucleonnucleon centre-of-mass energy root s(NN)= 5.02 TeV, has been performed with the ALICE apparatus at the LHC. The phi-mesons have been identified in the dimuon decay channel in the transverse momentum (p(T)) range 1 <p(T) <7GeV/c, both in the p-going (2.03 <y <3.53) and the Pb-going (-4.46 <y <-2.96) directions - where ystands for the rapidity in the nucleon-nucleon centre-of-mass - the integrated luminosity amounting to 5.01 +/- 0.19nb(-1) and 5.81 +/- 0.20nb(-1), respectively, for the two data samples. Differential cross sections as a function of transverse momentum and rapidity are presented. The forward-backward ratio for f-meson production is measured for 2.96Peer reviewe

    Measurement of D-s(+) product ion and nuclear modification factor in Pb-Pb collisions at root S-NN=2.76 TeV

    Get PDF
    Peer reviewe
    corecore