407 research outputs found

    Quarkonium dissociation by anisotropy

    Get PDF
    We compute the screening length for quarkonium mesons moving through an anisotropic, strongly coupled N=4 super Yang-Mills plasma by means of its gravity dual. We present the results for arbitrary velocities and orientations of the mesons, as well as for arbitrary values of the anisotropy. The anisotropic screening length can be larger or smaller than the isotropic one, and this depends on whether the comparison is made at equal temperatures or at equal entropy densities. For generic motion we find that: (i) mesons dissociate above a certain critical value of the anisotropy, even at zero temperature; (ii) there is a limiting velocity for mesons in the plasma, even at zero temperature; (iii) in the ultra-relativistic limit the screening length scales as (1v2)ϵ(1-v^2)^\epsilon with \epsilon =1/2, in contrast with the isotropic result \epsilon =1/4.Comment: 39 pages, 26 figures; v2: minor changes, added reference

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    The Origin of GPCRs: Identification of Mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in Fungi

    Get PDF
    G protein-coupled receptors (GPCRs) in humans are classified into the five main families named Glutamate, Rhodopsin, Adhesion, Frizzled and Secretin according to the GRAFS classification. Previous results show that these mammalian GRAFS families are well represented in the Metazoan lineages, but they have not been shown to be present in Fungi. Here, we systematically mined 79 fungal genomes and provide the first evidence that four of the five main mammalian families of GPCRs, namely Rhodopsin, Adhesion, Glutamate and Frizzled, are present in Fungi and found 142 novel sequences between them. Significantly, we provide strong evidence that the Rhodopsin family emerged from the cAMP receptor family in an event close to the split of Opisthokonts and not in Placozoa, as earlier assumed. The Rhodopsin family then expanded greatly in Metazoans while the cAMP receptor family is found in 3 invertebrate species and lost in the vertebrates. We estimate that the Adhesion and Frizzled families evolved before the split of Unikonts from a common ancestor of all major eukaryotic lineages. Also, the study highlights that the fungal Adhesion receptors do not have N-terminal domains whereas the fungal Glutamate receptors have a broad repertoire of mammalian-like N-terminal domains. Further, mining of the close unicellular relatives of the Metazoan lineage, Salpingoeca rosetta and Capsaspora owczarzaki, obtained a rich group of both the Adhesion and Glutamate families, which in particular provided insight to the early emergence of the N-terminal domains of the Adhesion family. We identified 619 Fungi specific GPCRs across 79 genomes and revealed that Blastocladiomycota and Chytridiomycota phylum have Metazoan-like GPCRs rather than the GPCRs specific for Fungi. Overall, this study provides the first evidence of the presence of four of the five main GRAFS families in Fungi and clarifies the early evolutionary history of the GPCR superfamily

    The influence of non-steroidal anti-inflammatory drugs and paracetamol used for pain control of orthodontic tooth movement: a systematic review

    Get PDF
    ABSTRACT The present study aimed to perform a systematic literature review to determine if there is a non-steroidal anti-inflammatory drug (NSAID) that interferes less within tooth movement. This research was performed according to the PRISMA statement. Articles were searched in eight electronic databases (PubMed, Scopus, Embase, Web of Science, LILACS, SciELO, Google Scholar, and Open Grey). Only experimental studies on male Wistar rats were selected, which included experiments related to the influence of NSAIDs on orthodontic movement. Studies in animals with pathological conditions, literature review articles, letters to the editor and/or editorials, case reports, abstracts, books, and book chapters were excluded. Each of the steps of this systematic literature review was performed by two examiners independently. Results: the total sample consisted of 505 articles, from which 6 studies were eligible after a qualitative analysis. From the drugs assessed, paracetamol was unanimous for not interfering within orthodontic movement when compared to the control group. However, drugs such as aspirin, ibuprofen, sodium diclofenac, and selective cyclooxygenase-2 inhibitors caused a reduction in tooth movement when compared to the control group. Conclusion: paracetamol could be considered the drug of choice for pain relief because it interferes less within tooth movement

    Refractory dispersion promotes conduction disturbance and arrhythmias in a Scn5a+/− mouse model

    Get PDF
    Accentuated right ventricular (RV) gradients in action potential duration (APD) have been implicated in the arrhythmogenicity observed in Brugada syndrome in studies assuming that ventricular effective refractory periods (VERPs) vary in concert with APDs. The present experiments use a genetically modified mouse model to explore spatial heterogeneities in VERP that in turn might affect conduction velocity, thereby causing arrhythmias. Activation latencies, APDs and VERPs recorded during programmed S1S2 protocols were compared in RV and left ventricular (LV) epicardia and endocardia of Langendorff-perfused wild-type (WT) and Scn5a+/− hearts. Scn5a+/− and WT hearts showed similar patterns of shorter VERPs in RV than LV epicardia, and in epicardia than endocardia. However, Scn5a+/− hearts showed longer VERPs, despite shorter APD90s, than WT in all regions examined. The pro- and anti-arrhythmic agents flecainide and quinidine increased regional VERPs despite respectively decreasing and increasing the corresponding APD90s particularly in Scn5a+/− RV epicardia. In contrast, Scn5a+/− hearts showed greater VERP gradients between neighbouring regions, particularly RV transmural gradients, than WT (9.1 ± 1.1 vs. 5.7 ± 0.5 ms, p < 0.05, n = 12). Flecainide increased (to 21 ± 0.9 ms, p < 0.05, n = 6) but quinidine decreased (to 4.5 ± 0.5 ms, p < 0.05, n = 6) these gradients, particularly across the Scn5a+/− RV. Finally, Scn5a+/− hearts showed greater conduction slowing than WT following S2 stimuli, particularly with flecainide administration. Rather than arrhythmogenesis resulting from increased transmural repolarization gradients in an early, phase 2, reentrant excitation mechanism, the present findings implicate RV VERP gradients in potential reentrant mechanisms involving impulse conduction slowed by partial refractoriness

    Roles of Small GTPase Rac1 in the Regulation of Actin Cytoskeleton during Dengue Virus Infection

    Get PDF
    An important clinical characteristic of dengue hemorrhagic fever/dengue shock syndrome is increased vascular permeability. Actin cytoskeleton is a significant element of endothelial barrier function regulation. In vitro study showed that dengue virus infection could induce redistributions of actin cytoskeleton. It is not precisely clear the roles of actin and the mechanisms of its reorganization during the infection. Using immunochemical assays, drug inhibition assays and protein interaction profiling methods, we aimed to identify the ways in which dengue virus serotype 2 interacts with actin cytoskeleton. The study showed that dynamic treadmilling of actin is necessary for dengue virus entry, production and release, while small GTPase Rac1 also plays multiple roles during these processes. In addition, we demonstrated the association of viral E protein with actin, indicating a direct effect of viral protein on the structural modifications of actin cytoskeleton. Our results provide evidence for the participation of Rac1 signaling pathways in viral protein-induced actin reorganizations, which may be a mechanism involved in the etiology of dengue hemorrhagic fever

    Aggressive mammary carcinoma progression in Nrf2 knockout mice treated with 7,12-dimethylbenz[a]anthracene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activation of nuclear factor erythroid 2-related factor (Nrf2), which belongs to the basic leucine zipper transcription factor family, is a strategy for cancer chemopreventive phytochemicals. It is an important regulator of genes induced by oxidative stress, such as glutathione S-transferases, heme oxygenase-1 and peroxiredoxin 1, by activating the antioxidant response element (ARE). We <it>hypothesized </it>that (1) the citrus coumarin auraptene may suppress premalignant mammary lesions via activation of Nrf2/ARE, and (2) that Nrf2 knockout (KO) mice would be more susceptible to mammary carcinogenesis.</p> <p>Methods</p> <p>Premalignant lesions and mammary carcinomas were induced by medroxyprogesterone acetate and 7,12-dimethylbenz[a]anthracene treatment. The 10-week pre-malignant study was performed in which 8 groups of 10 each female wild-type (WT) and KO mice were fed either control diet or diets containing auraptene (500 ppm). A carcinogenesis study was also conducted in KO vs. WT mice (n = 30-34). Comparisons between groups were evaluated using ANOVA and Kaplan-Meier Survival statistics, and the Mann-Whitney U-test.</p> <p>Results</p> <p>All mice treated with carcinogen exhibited premalignant lesions but there were no differences by genotype or diet. In the KO mice, there was a dramatic increase in mammary carcinoma growth rate, size, and weight. Although there was no difference in overall survival, the KO mice had significantly lower mammary tumor-free survival. Also, in the KO mammary carcinomas, the active forms of NF-κB and β-catenin were increased ~2-fold whereas no differences in oxidized proteins were observed. Many other tumors were observed, including lymphomas. Interestingly, the incidences of lung adenomas in the KO mice were significantly higher than in the WT mice.</p> <p>Conclusions</p> <p>We report, for the first time, that there was no apparent difference in the formation of premalignant lesions, but rather, the KO mice exhibited rapid, aggressive mammary carcinoma progression.</p

    Measurement of VH, H → b b ¯ production as a function of the vector-boson transverse momentum in 13 TeV pp collisions with the ATLAS detector

    Get PDF
    Cross-sections of associated production of a Higgs boson decaying into bottom-quark pairs and an electroweak gauge boson, W or Z, decaying into leptons are measured as a function of the gauge boson transverse momentum. The measurements are performed in kinematic fiducial volumes defined in the `simplified template cross-section' framework. The results are obtained using 79.8 fb-1 of proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. All measurements are found to be in agreement with the Standard Model predictions, and limits are set on the parameters of an effective Lagrangian sensitive to modifications of the Higgs boson couplings to the electroweak gauge bosons
    corecore